Roll	No.	:	
------	-----	---	--

Total No. of Questions: 11]

[Total No. of Printed Pages : 4

APP-1065

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS

Paper - I

(Advanced Abstract Algebra)

Time : **3** *Hours*] [Maximum Marks : 100 Section-A (Marks : $2 \times 10 = 20$) Answer all ten questions (Answer limit 50 words). Each question carries Note :-2 marks. Section-B $(Marks: 4 \times 5 = 20)$ Note :-Answer all five questions. Each question has internal choice (Answer limit 200 words). Each question carries 4 marks. Section-C (Marks : $20 \times 3 = 60$) Answer any three questions out of five (Answer limit 500 words). Each *Note* :question carries 20 marks. Section-A

1. Define the following:

- (i) Commutator subgroup
- (ii) Algebraic extension
- (iii) Central ascending series

BR-205 (1) APP-1065 P.T.O.

Perfect field

Similar matrices

Minimal polynomial

(iv)

(v)

(vi)

6. Show that the function $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined as $f(u, w) = u_1 w_2 - u_2 w_1$ is a bilinear form on $\mathbb{R}^2 \times \mathbb{R}^2$, where :

$$u = (u_1, u_2), w = (w_1, w_2)$$

$$Or$$

Show that $K_n(C)$ is an inner product space for the inner product defined as:

$$(u, w) = u_1 \overline{w}_1 + u_2 \overline{w}_2 + \dots + u_n \overline{w}_n$$

where:

$$u = (u_1, u_2, ..., u_n), w = (w_1, w_2, ..., w_n)$$

Section-C

- 7. (i) If L is an algebraic extension of K and if K is an algebraic extension of F, then show that L is an algebraic extension of F.
 - (ii) If f is a homomorphism of a group G into G', then show that :

$$\frac{G}{K_{\text{erf}}} \cong f(G)$$

- 8. (i) Show that any splitting field of a polynomial over field F is a normal extension of F.
 - (ii) Show that an infinite abelian group does not have a composition series.
- 9. Let $f(x) = a_0 + a_1 x + \dots + a_n x^n$ be a polynomial with coefficients as integers. If p is a prime such that :

$$p \times a_{n}, p/a_{n-1}, p/a_{n-2},, p/a_{0} \text{ and } p^{2} \times a_{0}$$

then show that f(x) is irreducible over the field of rational numbers.

- 10. (i) Show that a linear transformation P on vector space V(F) is a projection on some subspace if it is idempotent.
 - (ii) Show that:

$$(t_1 + t_2)^* = t_1^* + t_2^*$$

where t^* is the adjoint of linear transformation t.

)

- 11. (i) State and prove Cauchy's Schwarz inequality.
 - (ii) If F is a field of characteristic (\neq 2), then show that every symmetric bilinear form on vector space V(F) is uniquely determined by the corresponding quadratic form.