Roll N	o. :	
--------	------	--

Total No. of Questions : 11]

BI-59

[Total No. of Printed Pages : 7

SLA-240

P.T.O.

SLA-240

B.A./B.Sc. Part-III Due of Part-II (Supplementary) Examination, 2022

MATHEMATICS

Paper - III

(Mechanics)

Time : 1½ *Hours*] [Maximum Marks : **68** Section-A (Marks : $1 \times 12 = 12$) Answer all twelve questions (Answer limit 50 words). Each question carries Note: 1 mark. (खण्ड-अ) (अंक : $1 \times 12 = 12$) सभी बारह प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 50 शब्द)। प्रत्येक प्रश्न 1 अंक का है। नोट :-Section-B $(Marks: 4 \times 5 = 20)$ Answer all *five* questions. Each question has internal choice (Answer limit Note :-200 words). Each question carries 4 marks. (खण्ड-ब) (अंक : $4 \times 5 = 20$) नोट :-सभी **पाँच** प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न में विकल्प का चयन कीजिए (उत्तर-सीमा 200 शब्द)। प्रत्येक प्रश्न 4 अंक का है। Section-C (Marks : $12 \times 3 = 36$) Answer any three questions out of five (Answer limit 500 words). Each Note: question carries 12 marks. (खण्ड–स) $(3\dot{a}a : 12 \times 3 = 36)$ पाँच में से किन्हीं तीन प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 500 शब्द)। प्रत्येक प्रश्न 12 अंक नोट ॱ─ का है।

(1

)

Section-A

(खण्ड-अ)

- 1. (i) What is the condition of equilibrium of a rigid body under three forces? तीन बलों के अन्तर्गत एक पिण्ड की साम्यावस्था की क्या शर्त है ?
 - (ii) Define friction and force of friction. घर्षण एवं घर्षण बल को परिभाषित कीजिए।
 - (iii) Prove for catenary : कैटिनरी के लिए सिद्ध कीजिए :

$$v^2 = c^2 + s^2$$

2)

- (iv) What do you mean by Null lines? शून्य आघूर्ण रेखाओं से क्या तात्पर्य है ?
- (v) Define tangential and normal velocities.

 स्पर्शरेखीय तथा अभिलाम्बिक वेग को परिभाषित कीजिए।
- (vi) Define time period of S.H.M.

 सरल आवर्त गति के आवर्तकाल को परिभाषित कीजिए।
- (vii) State inverse-square law.

 व्युत्क्रम वर्ग नियम का कथन लिखिए।
- (viii) What do you mean by Modulus of Elasticity ? प्रत्यास्थता मापांक से आपका क्या अभिप्राय है ?
- (ix) Write energy equation for circular motion. वर्तुल गति के लिए ऊर्जा समीकरण लिखिए।
- (x) Define direct impact. समक्ष संघट्ट को परिभाषित कीजिए।

- (xi) Write pedal equation of central orbit. संकेन्द्रीय कक्ष का पादिक समीकरण लिखिए।
- Explain velocity for infinity. (xii) अनन्त से वेग की व्याख्या कीजिए।

Section-B

(खण्ड-ब)

2. A heavy carriage wheel of weight W and radius r is to be dragged over an obstacle of height h, by a horizontal force F applied to the centre of wheel. Show that F must be slightly greater than $W(2hr - h^2)^{1/2}/(r - h)$.

एक गाड़ी का पहिया जिसका भार W और त्रिज्या r है, एक h ऊँचाई की रुकावट के ऊपर उसके केन्द्र पर क्षैतिज दिशा में बल लगाकर खींचा जाता है। सिद्ध कीजिए कि बल $W(2hr-h^2)^{1/2}/(r-h)$ से थोड़ा अधिक होना चाहिए।

Or

(अथवा)

A uniform ladder of length l and weight W, rests with its foot on the rough ground and its upper end against a smooth wall, the inclination to the vertical being a. A force P is applied horizontally to the ladder at a point distant c from the foot so as to make the foot approach the wall. Prove that P must exceed

$$\frac{IW\left(\mu + \frac{1}{2}\tan\alpha\right)}{(l-c)}$$
, where μ is the coefficient of friction at the foot.

l लम्बाई और W भार की एक एकसमान सीढ़ी का पाद किसी रुक्ष क्षैतिज भूमि पर और ऊपर वाला सिरा किसी चिकनी दीवार के सहारे स्थित है, सीढ़ी का ऊर्ध्वाधर से झुकाव α है। पाद से c दूरी पर स्थित बिन्दु पर कोई क्षैतिज बल P से सीढ़ी को दीवार की ओर खींचा जाता है। सिद्ध कीजिए कि

$$P$$
 का मान $\frac{IW\left(\mu + rac{1}{2} an \alpha\right)}{(l-c)}$ से अधिक होना चाहिए, जहाँ μ पाद पर घर्षण गुणांक है। $-\mathbf{59}$ (3) $\mathbf{SLA-24}$

BI-59

3. Four equal rods, each of length *a*, are joined to form a rhombus ABCD and angles B and D are jointed by a string of length *l*. The system is placed in a vertical plane with A resting on a horizontal plane and AC vertical. Prove that

the tension of the string is $\frac{2wl}{\sqrt{(4a^2-l^2)}}$, where w is the weight of each rod.

a लम्बाई की चार समान दण्डों को जोड़कर एक समचतुर्भुज ABCD बनाया जाता है और B तथा D को l लम्बाई की एक डोरी द्वारा जोड़ा जाता है। निकाय को इस प्रकार एक ऊर्ध्वाधर समतल में रखा जाता है कि A क्षैतिज समतल पर रहे तथा AC ऊर्ध्वाधर रहे। सिद्ध कीजिए कि डोरी का तनाव

$$\frac{2wl}{\sqrt{(4a^2-l^2)}}$$
 है, जहाँ w प्रत्येक दण्ड का भार है।

Or

(अथवा)

A uniform chain of length l, which can just bear a tension of n times its weight, is suspended between two points at the same horizontal level. Show that the least

possible sag in the middle is
$$l\left\{n-\sqrt{n^2-\frac{1}{4}}\right\}$$
.

l लम्बाई की एकसमान जंजीर एक क्षैतिज रेखा के दो बिन्दुओं के मध्य लटकाई गई है जो अपने भार के n गुने तनाव को सहन कर सकती है। प्रदर्शित कीजिए कि इसके मध्य में न्यूनतम झोल $l\left\{n-\sqrt{n^2-\frac{1}{4}}\right\}$ है।

4. A moving particle P possesses two constant velocities u and v, the first of which is in a fixed direction and the other is perpendicular to the radius vector OP drawn from a fixed point O. Prove that the path of the particle is a conic section

whose focus is O and whose eccentricity is $\frac{u}{v}$.

किसी गितमान कण P के दो अचर वेग u और v हैं, प्रथम वेग किसी स्थिर दिशा में है और दूसरा वेग किसी स्थिर बिन्दु O से खींची गई ध्रुवान्तर रेखा OP के लम्बवत् दिशा में है। सिद्ध कीजिए कि

कण का पथ एक शंकु परिच्छेद है जिसकी नाभि O तथा उत्केन्द्रता $\frac{u}{v}$ है।

(अथवा)

A particle moves in a straight line under an attractive force varying as $(\text{distance})^{-4/3}$. Show that the velocity falling from rest at infinity at a distance a is equal to that acquired in falling from rest at a distance a to a distance $\frac{a}{8}$. एक कण एक सरल रेखा पर स्थित किसी स्थिर बिन्दु की ओर $(\text{दूरl})^{-4/3}$ के अनुपाती किसी आकर्षी बल के अधीन सरल रेखा में चलता है। सिद्ध कीजिए कि अनन्त पर विरामावस्था से बल केन्द्र से a दूरी पर गिरने पर प्राप्त वेग, a दूरी से $\frac{a}{8}$ दूरी पर गिरने वाले कण द्वारा प्राप्त वेग के बराबर होगा।

5. A particle of mass m is performing S.H.M. in the line joining two points A and B on a smooth plane and is connected with these points by elastic strings of natural lengths a and a', the modulii of elasticity being λ and λ' respectively. Show that the periodic time is :

$$2n\sqrt{m\left\{\frac{\lambda}{a} + \frac{\lambda'}{a'}\right\}^{-1}}$$

m द्रव्यमान का एक कण चिकने समतल पर स्थित दो बिन्दुओं A और B को मिलाने वाली रेखा पर सरल आवर्त गित में गितमान है और वह इन बिन्दुओं से a और a' स्वाभाविक लम्बाई की प्रत्यास्थ डोरियों द्वारा बँधा हुआ है। यदि प्रत्यास्थ मापांक क्रमशः λ तथा λ' हों, तो सिद्ध कीजिए कि आवर्तकाल है :

$$2n\sqrt{m\left\{\frac{\lambda}{a} + \frac{\lambda'}{a'}\right\}^{-1}}$$

Or

(अथवा)

Discuss the motion of a particle of mass m projected with velocity u along a smooth vertical curve.

m द्रव्यमान के एक कण की गित, जो वेग u से एक चिकने ऊर्ध्वाधर वक्र के अनुदिश फेंका जाता है, की विवेचना कीजिए।

6. A sphere impinges directly on an equal sphere at rest. If the coefficient of restitution be e, show that their velocities after impact are as (1 - e): (1 + e). एक गेंद किसी दूसरी समान मात्रा की गेंद से संघट्ट करती है जोकि विरामावस्था में है। यदि प्रत्यानयन गुणांक e हो, तो दर्शाइये कि संघट्ट के पश्चात् इन गेंदों का वेग (1 - e): (1 + e) होगा।

Or

(अथवा)

If ν_1 and ν_2 are velocities of a planet when it is respectively nearest and farthest from the sun, prove that :

यदि v_1 तथा v_2 किसी ग्रह के उस समय के वेग हों जब वह सूर्य से क्रमशः न्यूनतम और अधिकतम दूरियों पर हैं, तो सिद्ध कीजिए कि :

$$(1 - e)v_1 = (1 + e)v_2$$

Section-C

(खण्ड–स)

- 7. A rod rests wholly within a smooth hemispherical bowl of radius r, its centre of gravity dividing the rod into two portions a and b. Show that if θ be the inclination of the rod to the horizon in the position of equilibrium, then :
 - (a) $\sin \theta = \frac{b a}{2\sqrt{(r^2 ab)}}$
 - (b) $\tan \theta = \frac{b-a}{b+a} \tan \alpha$

where rod intersects angle 2α at the center of the sphere.

एक छड़ जिसका गुरुत्व केन्द्र उसे a और b लम्बाई के दो भागों में विभाजित करता है, r त्रिज्या के एक चिकने गोले के अन्दर पूर्णत: रखी हुई है। यदि साम्यावस्था में छड़ का क्षैतिज से झुकाव θ हो, तो सिद्ध कीजिए कि :

$$\sin\theta = \frac{b-a}{2\sqrt{(r^2 - ab)}}$$

$$(\overline{a})$$
 $\tan \theta = \frac{b-a}{b+a} \tan \alpha$

जहाँ छड़ गोले के केन्द्र पर कोण 2α अंतरित करती है।

8. A force F acts along the axis of x and another force nF along a generator of the cylinder $x^2 + y^2 = a^2$, show that the central axis lies on the following cylinder : एक बल F, x-अक्ष के अनुदिश क्रियाशील है तथा दूसरा बल nF बेलन $x^2 + y^2 = a^2$ के एक जनक के अनुदिश कार्यरत् है। प्रदर्शित कीजिए कि केन्द्रीय अक्ष निम्न बेलन पर स्थित है :

$$n^2(nx-z)^2 + (1 + n^2)^2y^2 = n^4a^2$$

- 9. Derive the formula for Tangential and Normal velocities and accelerations. स्पर्शरेखीय तथा अभिलाम्बिक वेग और त्वरण के सूत्रों को स्थापित कीजिए।
- 10. One end of a light elastic string of natural length *a* and modulus 2*mg* is attached to a fixed point O and the other end is tied to a particle of mass *m* and held at rest at O, is allowed to fall. Find the greatest extension of the string and show that the particle will reach O again after a time:

एक प्रत्यास्थ डोरी की स्वाभाविक लम्बाई a और प्रत्यास्थ मापांक 2mg है। इसका एक सिरा बिन्दु O पर बँधा है और दूसरे सिरे से m द्रव्यमान का कण बाँधा गया है। कण को बिन्दु O पर ले जाकर विरामावस्था से गिराया गया। डोरी का उच्चतम विस्तार ज्ञात कीजिए और सिद्ध कीजिए कि कण वापस बिन्दु O पर निम्न समय के बाद पहुँचेगा :

$$(\pi + 2 - \tan^{-1} 2) \sqrt{\left(\frac{2a}{g}\right)}$$

11. A particle of mass m moves under a central force $m\mu \left(\frac{5}{r^3} + \frac{8c^2}{r^5}\right)$ and is projected from an apse at a distance c with velocity $\frac{3\sqrt{\mu}}{c}$. Prove that the orbit is $r = c\cos\left(\frac{2}{3}\theta\right)$ and that it will arrive at the origin after a time $\frac{\pi c^2}{8\sqrt{\mu}}$.

संहित का एक कण केन्द्रीय आकर्षी बल $m\mu\left(\frac{5}{r^3} + \frac{8c^2}{r^5}\right)$ के अधीन गितमान है और इसे c दूरी पर स्थित स्तिब्धिका से $\frac{3\sqrt{\mu}}{c}$ वेग से प्रक्षिप्त िकया जाता है। सिद्ध कीजिए िक संकेन्द्र कक्षा $r = c\cos\left(\frac{2}{3}\theta\right)$ है और यह $\frac{\pi c^2}{8\sqrt{\mu}}$ समय के पश्चात् मूलिबन्दु पर पहुँचता है।