Total No. of Questions: 16] [Total No. of Printed Pages: 4

SEMM-416

M.Sc. (IVth Semester) Examination, 2022 MICROBIOLOGY

Paper - MBEO-402 (A)

(Biostatistics)

Time: 1½ Hours] [Maximum Marks: 40

Note: The Question paper contains three Sections.

Section–A (Marks : $1 \times 10 = 10$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries1 mark.

Section–B (Marks: $3 \times 5 = 15$)

Note: Answer *five* questions by selecting at least *one* question from each Unit. Each question carries **3** marks. Answer should not exceed **200** words.

Section–C (Marks: $5 \times 3 = 15$)

Note: Answer *three* questions by selecting *one* from each Unit. Each question carries 5 marks. Answer should not exceed **500** words.

BI-257 (1) SEMM-416 P.T.O.

Section-A

1. (i) What is the value of lower and upper class limit in the given grouped frequency distribution?

Class	?–10	10–20	20–30	30–40	40–?
Frequency	2	5	3	7	4

- (ii) What do you understand by Parameter in Statistics?
- (iii) Define attributes.
- (iv) Lottery method of sampling comes under which type of Sampling-random or Non-random ?
- (v) Bar charts or diagram are used for the graphical presentation of which type of variables-discrete or continuous ?
- (vi) Gaussian distribution of data is also known as distribution.
- (vii) Give two examples of Count Data.
- (viii) Explain Dependent Variable.
- (ix) The relationship between the two variables X and Y in the given graph is known as :

- (a) Linear Correlation
- (b) Non-linear Correlation
- (c) No Correlation
- (d) Curvilinear Correlation
- (x) The mathematical calculation of relationship between two variables is calculated using regression or correlation.

Section-B

Unit-I

- 2. Write six applications of Biostatistics in Microbiology.
- 3. Write an illustrative note on Grouped Frequency Distribution.
- 4. Write a note on Cluster Sampling.

Unit-II

- 5. Write a short note on Histogram.
- 6. Draw a bar diagram from the given data:

Year	2010	2012	2014	2016
Malaria Cases	10	20	5	30

7. In a grassland the bacterial population was sampled from ten randomly located plots of 1 m² area. The following table gives the number of bacteria obtained. Examine the distribution patterns of bacteria using the Chi-square Test.

Area	No. of Bacteria/m ²		
1	2×10^{6}		
2	25×10^6		
3	17×10^6		
4	23×10^{6}		
5	15×10^6		
6	39×10^6		
7	27×10^{6}		
8	19×10^{6}		
9	22×10^{6}		
10	26×10^{6}		

Unit-III

- 8. Write an illustrative note on Simple Probability.
- 9. Write a note on Partial Covariance.
- 10. Write a note on Applications of Multiple Regression.

Section-C

Unit-I

- 11. Write a note on Non-random Sampling Methods.
- 12. Write notes on the following:
 - (a) Bias in Sampling
 - (b) Sequential Sampling

Unit-II

13. Calculate Mean and Median from the given data:

Class Interval	10–25	25–40	40–55	55–70	70–85	85–100
Number of	2	3	7	6	6	6
Observations	Δ	3	,	U	0	

- 14. Write notes on the following:
 - (a) Statistical basis of Radioactivity
 - (b) Ogive Curves

Unit-III

- 15. Write notes on the following:
 - (a) Use of correlation in Biostatistics
 - (b) Cole's measure of correlation between two species
- 16. Write notes on the following:
 - (a) Statistical analysis of LD_{50}
 - (b) Response-dose Relationship