No.	:	
	No.	No. :

Total No. of Questions: 16] [Total No. of Printed Pages: 4

MATHSEM-119

M.A./M.Sc. (Ist Semester) Examination Dec., 2022 MATHEMATICS

Paper - III

(Tensor Analysis)

Time: 3 Hours [Maximum Marks: 50

The question paper contains three Sections.

Section-A (Marks : $1 \times 9 = 9$)

Note: Answer all the *nine* questions carries 1 mark each. The answer should not exceed **50** words.

Section–B (Marks : $4 \times 5 = 20$)

Note:— Answer *five* questions by selecting at least *one* question from each Unit. Each question carries **4** marks. Answer should not exceed **200** words.

Section–C (Marks : $7 \times 3 = 21$)

Note: Answer three questions by selecting at least one question from each Unit.

Each question carries 7 marks. The answer should not exceed 500 words.

BRI-19 (1) MATHSEM-119 P.T.O.

Section-A

- 1. (i) Define conjugate or reciprocal symmetric tensor.
 - (ii) If A^{ij} is Skew-symmetric and B_{ij} is symmetric, prove that $A^{ij}B_{ij} = 0$.
 - (iii) Find the condition of orthogonality of two vectors A^i and B^i .
 - (iv) Evaluate:

$$[i j, k] + [k j, i]$$

- (v) Obtain the necessary and sufficient condition for a vector B^i , if variable magnitude to suffer a parallel displacement along a curve C is that $B^i_{ij} \frac{dx^j}{ds} \cdot$
- (vi) Define Geodesics.
- (vii) What is the condition for flat space?
- (viii) Find the value of:

$$R_{ijk}^{\beta} + R_{jki}^{\beta} + R_{kij}^{\beta}$$

(ix) Define Covariant curvature tensor.

Section-B

Unit-I

- 2. Prove that Kronecker delta is a mixed tensor of rank two and it is invariant.
- 3. Prove that outer multiplication of tensor is commutative and associative.
- 4. Prove that (1, 0, 0, 0) and $(\sqrt{2}, 0, 0, \sqrt{3}/c)$ are unit vectors in V_4 with the metric :

$$ds^{2} = -(dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2} + c^{2}(dx^{4})^{2}$$

Also prove that the angle between these vectors is not real.

Unit-II

5. If g_{ij} and a_{ij} are components of two symmetric covariant tensors and $\begin{cases} i \\ jk \end{cases}_g$, $\begin{cases} i \\ jk \end{cases}_a$ are the corresponding Christoffel symbols of the second kind then prove that the quantities :

$$\begin{cases} i \\ jk \end{cases}_{g} - \begin{cases} i \\ jk \end{cases}_{a}$$

are components of a mixed tensor.

6. Show that the pole P_0 of the geodesic coordinate system :

$$\mathbf{A}_{i,jk} = \frac{\partial^2 \mathbf{A}_i}{\partial x^j \partial x^k} - \mathbf{A} \mathbf{I} \frac{\partial}{\partial x^k} \begin{pmatrix} \mathbf{I} \\ ij \end{pmatrix}$$

7. Show that the covariant derivative of an invariant is the same as its ordinary derivative.

Unit-III

- 8. For a V_2 referred to an orthogonal system of parametric curve, show that :
 - (i) $R_{12} = 0$
 - (ii) $R_{11}g_{22} = R_{22}g_{11} = R_{1221}$
- 9. Define Ricci Tensor and explain its properties.
- 10. Show that a geodesic is an auto parallel curve.

Section-C

Unit-I

- 11. Prove that the fundamental tensor g_{ij} is a covariant symmetric tensor of rank two.
- 12. Prove that:
 - (i) $g^{ij}g^{kl}dg_{ik} = -dg^{jl}$
 - (ii) $g_{ij}g_{kl}dg^{ik} = -dg_{jl}$

Unit-II

- 13. The covariant derivative of a covariant vector is symmetric if and only if the vector is gradient.
- 14. Show that the covariant derivatives of the tensors g_{ij} , g^{ij} and δ all vanish identically.

Unit-III

- 15. State and prove Bianchi identity.
- 16. If the metric of a two dimensional flat space is :

$$ds^2 = f(r)[(dx^1)^2 + (dx^2)^2],$$

show that $f(r) = c(r)^k$, where $r^2 = (x^1)^2 + (x^2)^2$ and c, k are constants.