| Roll | No. |   |  |
|------|-----|---|--|
|      |     | • |  |

Total No. of Questions: 11

[ Total No. of Printed Pages : 4

### **BPF-2236**

## M.Sc. (Final) Examination, 2022 PHYSICS

Paper - VIII(a)

# (Physics of Lasers and Science and Technology of Solar Hydrogen)

Time: 3 Hours [ Maximum Marks: 75

Section-A (Marks:  $2 \times 10 = 20$ )

Note: Answer all ten questions (Answer limit 50 words). Each question carries2 marks.

Section–B (Marks:  $5 \times 5 = 25$ )

Note: Answer all *five* questions. Each question has internal choice (Answer limit **200** words). Each question carries **5** marks.

Section–C (Marks :  $10 \times 3 = 30$ )

**Note**: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **10** marks.

#### Section-A

1. (i) Draw the energy level diagram for a three level laser and mention types of transitions in it.

BR-670 ( 1 ) BPF-2236 P.T.O.

- (ii) Draw the schematic for Kerr-lens mode locking. Give a brief description.
- (iii) Discuss the property of a laser beam which makes it useful for surgery.
- (iv) Why optical fibers are used in communication?
- (v) Explain the photovoltaic effect with the help of a band level diagram.
- (vi) Why dye lasers are called Tunable?
- (vii) Define fill factor and efficiency of a solar cell.
- (viii) Why amorphous silicon is mostly used in thin film solar cells?
- (ix) Why special methods are needed for the storage of hydrogen fuel?
- (x) "Hydrogen is a future of enregy economy." Make a comment.

#### Section-B

2. Draw the stability graph for a two-mirror spherical resonator cavity and explain it.

Or

For a four-level laser, show that:

$$\frac{\Delta N}{N} \approx \frac{W_P}{W_P + T_{32}}$$

where  $\Delta N$  is the population inversion density.

- 3. (a) Draw a schematic diagram for the experimental demonstration of second harmonic generation.
  - (b) Discuss the second harmonic power output.

Or

Write a note on 'Types of Optical fibers in Lightwave communication'.

4. How pulsed lasers with high peak power are generated? Explain.

BR-670 ( 2 ) BPF-2236

Write brief notes on each of the following:

- (i) Semiconductor lasers
- (ii) Excimer laser
- 5. Write brief notes on each of the following:
  - (i) Thin film Tandem solar cell
  - (ii) Gallium Arsenide solar cell

Or

Write brief notes on each of the following:

- (i) Solar thermal energy
- (ii) Ocean thermal energy
- 6. Draw a schematic diagram of solar green hydrogen. Explain it.

Or

Discuss solid state hydrogen storage materials.

#### Section-C

7. (a) Using diffraction divergence of a Gaussian laser beam, show that its diffraction angle is given by :

$$\theta = \tan^{-1} \left( \frac{\lambda}{\pi w_0} \right)$$

where,  $w_0$  is the spot size of the beam.

5

5

4

- (b) Mention five properties of Gaussian mode which make it suitable for laser systems.
- 8. (a) Discuss the role of laser induced fluorescence spectroscopy in detection of purity of a sample.

**BR-670** 

( 3 )

**BPF-2236** P.T.O.

|     | (b)   | Draw a schematic diagram for the experimental observation of stimulated |    |  |  |
|-----|-------|-------------------------------------------------------------------------|----|--|--|
|     |       | Raman emission.                                                         | 3  |  |  |
|     | (c)   | Discuss the importance of laser in the observation of Raman shift.      | 3  |  |  |
| 9.  | (a)   | On what factors does the absorption coefficient in direct and indirect  |    |  |  |
|     |       | transition semiconductors depends upon ? Explain.                       | 6  |  |  |
|     | (b)   | Discuss the rate of radiative recombination in semiconductors.          | 4  |  |  |
| 10. | Write | a note on photoelectrochemical water splitting.                         | 10 |  |  |
| 11. | Write | a note on 'Types of Solar Cells'.                                       | 10 |  |  |