Roll	No.	:	

Total No. of Questions: 11

[Total No. of Printed Pages : 4

BPF-2232

M.Sc. (Final) Examination, 2022 PHYSICS

Paper - VI

(Nuclear and Particle Physics)

Time: 3 Hours [Maximum Marks: 75

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries2 marks.

Section–B (Marks : $5 \times 5 = 25$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 5 marks.

Section–C (Marks: $10 \times 3 = 30$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **10** marks.

Section-A

- 1. (i) If a nucleon emits a pion of rest mass 270 M_e , then find the range of nuclear force.
 - (ii) Define Q-value for a nuclear reaction.

BR-221 (1) BPF-2232 P.T.O.

- (iii) Write all magic numbers upto Z or/and A = 126.
- (iv) What is the collective rotational motion of the nucleus?
- (v) Give the simplest examples of β^+ and β^- decay.
- (vi) What is the cause of nuclear decay through the emission of γ -rays?
- (vii) A GM counter has a dead time 400 μ s. What is the true counting rate when the observed rate is 1000 per minute ?
- (viii) What are the advantages of the silicon p-n junction as a detector of heavy particles ?
- (ix) Write the exchange quanta in the cases of fundamental interactions.
- (x) What is the difference between 'leptons' and 'hadrons'? Give some examples of 'leptons' and 'hadrons'.

Section-B

2. Write a short note on charge independence of nuclear force and isospin formation.

Or

State and explain reciprocity theorem.

3. Explain Bohr-Wheeler theory of nuclear fission on the basis of liquid-drop model.

Or

Use the single particle shell model to predict the ground state spin, parities and magnetic moments of $^{27}_{13}\text{Al}$, $^{33}_{16}\text{S}$ and $^{41}_{18}\text{Ar}$.

4. Plot the energy spectrum of β -decay and explain why it is a continuous spectrum. Describe properties of neutrino.

Or

Write a short note on 'nuclear isomerism'.

5. Give the theory and working of proportional counter detecting charged particle.

Or

Find the number of ion-pairs produced by 10 MeV proton. If in the proportionality region the amplification is 10^3 , current pulse time is 10 μ s and resistance between electrodes is $10^4 \Omega$. Find the voltage pulse height. The amount of energy required to produce one ion-pair is 34 eV.

- 6. With the help of conservation laws determine which of the following reactions are allowed or forbidden:
 - (i) $\pi^+ + n \to k^{\circ} + k^+$
 - (ii) $\pi^- + p \rightarrow n + \pi^\circ$

Or

Give the quark model of:

- (i) Mesons
- (ii) Protons
- (iii) Neutrons

Section-C

- 7. Define Scattering cross-section and Scattering length. Give an account of effective-range theory of n-p scattering at low energies.
- 8. Give a brief account of single particle shell model which predicts the magic numbers. Assuming the shell model to be correct, what should be spin and parity of ground state of $^{15}_{7}N$?

- 9. List the conservation laws obeyed in β -decay. Which conservation law is violated? How has this been experimentally verified?
- 10. Describe a Scintillation Counter. What are organic and inorganic scintillators?

 What advantages has it over other types of counters?
- 11. Classify the elementary particles. What do you know about lepton and mesons?

 What conservation laws are obeyed in the case of production and annihilation of particles?