Roll	No.	:	

Total No. of Questions: 10]

[Total No. of Printed Pages : 3

BPF-2225

M.Sc. (Final) Examination, 2022 COMPUTER SCIENCE

Paper - MCS-204

(Discrete Mathematics)

Time: 3 Hours] [Maximum Marks: 100

Note: Attempt *five* questions in all, selecting *one* question from each Unit. All questions carry equal marks.

Unit-I

- 1. (a) Explain the truth tables of the following with examples for two variables:
 - (i) X OR Y
 - (ii) X AND \overline{Y}
 - (iii) \bar{X} OR \bar{Y}
 - (iv) Y AND \bar{X}
 - (b) Prove the following using mathematical induction:

$$1 + 2^n < 3^n \text{ for } n \ge 2$$
 $10 \times 2 = 20$

BR-664 (1) BPF-2225 P.T.O.

2.	Expl	lain each of the following:			
	(a)	Tautologies			
	(b)	Biconditional			
	(c)	Power set			
	(d)	Logical equivalence			
	(e)	Venn diagrams 4×5=2	0		
		Unit-II			
3. (a) (b)	Write algorithm to find the smallest number of given three integers.				
	Write a recursive function to find the factorial of a given number. $10\times2=2$	20			
4.	(a)	What are the properties of equivalence relations? Explain the concept with suitable example.			
	(b)	Suppose a relation $R(> =)$ is defined over following set A. Represent the following relation graphically/pictorially and in matrix form :			
		$A = \{2, 4, 5, 9, 12\}$ $10 \times 2 = 2$	20		
		Unit-III			
5.	suita	w the Hasse diagram for a partial order that has ten elements. You may take able assumptions and mention these assumptions. You may take the POSET our choice with 10 elements.	20		
6.	·	lain the following :			
	(a)	Karnaugh map			
	(b)	Isomorphic order sets			
	(c)	Supremum			
	(d)	Well order sets			
	(e)	Duality in Boolean algebra. $4 \times 5 = 2$	0		
BI	R-6	64 (2) BPF-222	5		

Unit-IV

7. (a) Expand the following expression using binomial theorem:

$$(x + 7)^5$$

- (b) In a family, there are 6 members. How many ways are possible to take the family picture? Assume at least 5 members must be there in a picture and all members are sitting in a single row. $10\times2=20$
- 8. (a) Explain the concept of Pascal's triangle and how to find the binomial coefficients using it.
 - (b) Out of 13 players, how many different Cricket teams (of 11 players) are possible? $10\times2=20$

Unit-V

- 9. Describe each of the following:
 - (a) Spanning tree
 - (b) Depth first search
 - (c) Binary tree
 - (d) Undirected graph
- 10. (a) Write the steps for Kruskal's algorithm and explain using suitable example.
 - (b) Write the adjacency matrix of a relation (with eight elements) of your choice. Mention the assumptions you have taken while writing. $10\times2=20$

 $4 \times 5 = 20$