Roll	No.	:	
KUII	INO.	•	

Total No. of Questions: 11]

[Total No. of Printed Pages : 3

BPF-2198

M.Sc. (Final) Examination, 2022 CHEMISTRY

Paper - VI (CH-502)

(Modern Techniques and Scope of Chemical Biology)

Time: 3 Hours [Maximum Marks: 75

Section-A (Marks : $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section–B (Marks : $5 \times 5 = 25$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 5 marks.

Section–C (Marks: $10 \times 3 = 30$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **10** marks.

Section-A

- 1. Attempt all questions. Answers should not exceed **50** words in each question.
 - (i) What is relationship between haemoglobin and myoglobin?
 - (ii) Write the essential and trace metals for biological systems.

BR-207 (1) BPF-2198 P.T.O.

	(iii)	Differentiate reversible and irreversible inhibition.				
	(iv)	What do you mean by acid-base catalysis?				
	(v)	Write any two uses of biomimetic chemistry.				
	(vi)	Discuss synthetic enzymes with suitable examples.				
	(vii)	Explain hydrolysis of ATP.				
	(viii)	How do calculation of average dimensions for various chain structure ?				
	(ix)	What is photocorrelation spectroscopy ?				
	(x)	How electrophoresis technique helps in evaluating molecular weight of biopolymers ?				
		Section-B				
Note		Answer all questions. Each question has internal choice (Answer limit 200 words).				
2.	Desci	Describe the cleavage of water through photosystem I and photosystem II.				
		Or				
	Expla	nin DNA polymerisation.				
3.	Write	short notes on the following:				
	(a)	Iron-sulphur proteins				
	(b)	Koshland's induced fit hypothesis				
		Or				
	Expla	nin enzyme mechanism for carboxypeptidase A and ribonuclease.				
4.	Write	short notes on the following:				
	(a)	Crown ethers				
	(b)	Cyclodextrin based enzyme models				
		Or				
Discuss the uses of enzymes in drug and food industries.						
BR	R-2(D7 (2) BPF-2198				

5. Explain various types of binding process in biological systems.

Or

Discuss the various functions of proteins in biological cell.

- 6. Write notes on the following:
 - (a) Ion transport through cell membrane
 - (b) Energy generation in mechanochemical system

Or

Explain the treatment of membrane transport and nerve conduction.

Section-C

- **Note**: Answer any *three* questions out of five. Answer should not exceed **500** words in each question.
- 7. Explain transport and storage of dioxygen through heme proteins in biological cell system.
- 8. Explain electron transport process in detail.
- 9. Explain co-enzyme chemistry in detail.
- 10. Discuss standard free energy change in biochemical reactions exergonic and endergonic.
- 11. Discuss various experimental techniques for evaluation of size, molecular weight and extent of hydration of biopolymers.