Roll	No.		
		•	

Total No. of Questions: 11]

[Total No. of Printed Pages : 3

BC-196

BCA (Part-I) Examination, 2022 MATHEMATICS FOR COMPUTER SCIENCE

Paper - BCA-101

Time: 3 Hours [Maximum Marks: 70

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all *ten* questions (Answer limit **50** words). Each question carries **2** marks.

Section–B (Marks: $4 \times 5 = 20$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 4 marks.

Section–C (Marks: $10 \times 3 = 30$)

Note:— Answer any *three* questions out of five (Answer limit **500** words). Each question carries **10** marks.

Section-A

- 1. (i) Define Identity Matrix.
 - (ii) Define Transpose of Matrix.
 - (iii) Define Propositions with example.
 - (iv) Define Tautologies.
 - (v) Define Greatest Common Divisor (GCD).

BR-301 (1) BC-196 P.T.O.

- (vi) Define Absolute Value.
- (vii) Define Power Sets with example.
- (viii) Define Universal Set.
- (ix) Define Relations.
- (x) Define Function.

Section-B

2. If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$
, verify $A^2 - 3A + 2I = 0$.

Or

Find
$$x$$
, y , z and w , if $3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 & x+y \\ z+w & 3 \end{bmatrix}$.

3. Prove that the statement $(p \to q) \leftrightarrow (\neg q \to \neg p)$ is a tautology.

Or

Construct the Truth Tables:

$$\sim (p \vee q) \cong \sim p \wedge \sim q$$

 $p \vee (q \wedge r) \cong (p \vee q) \wedge (p \vee r)$

4. Prove by Mathematical Induction:

$$1^2 + 2^2 + 3^2 + \dots + (2n - 1) = n^2$$

Or

Explain Primes, divisibility and properties of Integer.

5. Explain Associative law and Commutative law.

Or

State and prove De Morgan's laws.

- 6. Explain:
 - (a) Domain and Range of a Relation
 - (b) Explain one to one and onto function

Or

Consider the function $f, g: R \to R$ defined by :

$$F(x) = x^2 + 3x + 1$$

$$g(x) = 2x - 3$$

Find:

- (i) *f o f*
- (ii) fog
- (iii) g o f

Section-C

7. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, find A^{-1} .

8. Show that given Argument is Valid:

$$p \rightarrow q$$

$$q \rightarrow r$$

$$p \rightarrow r$$

- 9. Explain Euclidean algorithm.
- 10. Explain Operation on sets with example.
- 11. Explain Equivalence relation with example.

: .