Roll	No.	:	
------	-----	---	--

Total No. of Questions: 11]

[Total No. of Printed Pages : 4

APP-1069

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS

Paper - V

(Numerical Methods)

Time: 3 Hours] [Maximum Marks: 100

Section-A (Marks : $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section–B (Marks : $4 \times 5 = 20$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 4 marks.

Section–C (Marks: $20 \times 3 = 60$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **20** marks.

Section–A 2 each

- 1. (i) Write down Newton's formula for finding out square root of a number.
 - (ii) Find out the initial approximate root of the equation $x \log_{10} x = 4.7772393$.

BR-646 (1) APP-1069 P.T.O.

- (iii) Divide $x^5 2x^4 + 3x^2 + 4x 1$ by (x 3), using synthetic division and obtain quotient and remainder (one step).
- (iv) Define Relaxation Method.
- (v) Write down the principle of method of least square for fitting a curve.
- (vi) State Orthogonal Property of Chebyshev Polynomial.
- (vii) Write down the formula of Euler's modified method for ordinary linear differential equation of first order.
- (viii) Explain briefly the Multi-step Methods.
- (ix) What is the difference between Initial Value Problem (IVP) and Boundary Value Problem (BVP) ?
- (x) Write the names of *two* methods by which boundary value problem can be solved.

Section–B 4 each

2. Solve $(12)^{1/2}$ by applying Newton's formula up to three places of decimal.

Or

Find the real root of the equation $x^2 + 4 \sin x = 0$ correct to four places of decimals by using Newton Raphson method.

3. Solve the following system of equations by Gauss-Seidal iteration method :

$$27x + 6y - z = 85$$
$$6x + 15y + 2z = 72$$
$$x + y + 54z = 110$$

Or

Perform two iterations of the Birge-Vieta method to find the smallest positive root of the polynomial $p_3(x) = 2x^3 - 5x + 1 = 6$ use the initial approximation $p_0 = 0.5$.

BR-646 (2) APP-1069

4. Fit a straight line to the following data:

x	1	2	3	4	5
y	2	5	3	8	7

Or

Use power method to find the largest eigenvalue and corresponding eigenvector of the matrix :

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

with initial vector $Y_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$.

5. Given:

$$\frac{dy}{dx} = \frac{y^2 - x}{y^2 + x} , x = 0, y = 1.$$

Compute y (0.1), y (0.2) by Euler's method.

Or

Use Taylor's series method to find the numerical solution of the :

$$\frac{dy}{dx} = x^2 + y^2$$

with x = 1, y = 0 at x = 1.2 (two steps).

6. Use Finite Difference method to solve the BVP:

$$\frac{d^2y}{dx^2}$$
 = y; y(0) = 0, y(1) = 1.8 with $h = \frac{1}{4}$.

Or

Explain shooting method for Boundary Value Problem.

Section-C

7. (i) Find double root of the equation:

$$x^4 - 6.75x^3 + 6.25x - 1.5 = 0$$
,

starting with $x_0 = 0.3$ using Newton Raphson Method.

(ii) Find a real root of the equation:

$$x^3 - 2x - 5 = 0$$

using Secant method, with two initial approximations $x_{-1} = 2$, $x_0 = 3$. 10+10

20

8. Find the roots of the equation:

$$x^3 - 2x - 5 = 0$$

by Birge-Vieta method correct up to two places of decimals.

- 9. Using the Chebyshev polynomials, obtain the least square approximation of second degree for $f(x) = x^4$ on [-1, 1].
- 10. Solve the equation:

$$\frac{dy}{dx} = x + y$$

with initial condition y(0) = 1 by Runge-Kutta rule, from x = 0 to x = 0.2 with h = 0.1.

11. Solve the Boundary Value Problem:

$$y''(x) = y(x)$$
; $y(0) = 0$, $y(1) = 1.1752$

by the shooting method, taking $m_0 = 0.8$ and $m_1 = 0.9$.