Roll No.	. :	
----------	-----	--

Total No. of Questions: 11]

[Total No. of Printed Pages : 4

APP-1068

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS

Paper - IV

(Differential and Integral Equations)

Time: 3 Hours [Maximum Marks: 100

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries2 marks.

Section–B (Marks : $4 \times 5 = 20$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 4 marks.

Section–C (Marks : $20 \times 3 = 60$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **20** marks.

Section-A

1. (i) Solve
$$\frac{dy}{dx} = \sqrt{|y|}$$
, $y(0) = 0$

BR-475 (1) APP-1068 P.T.O.

(ii) Classify the following PDE:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$

- (iii) Explain Eigen function expansion.
- (iv) Define Green's function.
- (v) Write the necessary condition for $I = \int_{x_1}^{x_2} f(x, y, y') dx$ to be an extremum.
- (vi) Define Functionals.
- (vii) Define linear integral equations.
- (viii) Define homogeneous Fredholm integral equation.
- (ix) Explain the solution of Volterra integral equations by the method of successive approximations.
- (x) Find the resolvent kernels if k(x,t) = 2x, $\lambda = 1$.

Section-B

2. Show that the solution y(x) of IVP:

$$\frac{dy}{dx} = y^2 + \cos x^2$$
, $y(0) = 0$

exist for $|x| \le \frac{1}{2}$.

Or

Obtain the GS of wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$.

3. Prove that all the eigenvalues of the Sturm-Liouville problem are real.

Or

Use Green's functions technique to obtain solution of :

$$\frac{d^2y}{dx^2} + k^2y(x) = f(x), \quad 0 \le x \le L$$

Subject to the BC : y(0) = 0, y(L) = 0.

4. Find the shortest curves joining two points (x_1, y_1) and (x_2, y_2) .

Or

Find a function y(x) for which $\int_0^1 \left[x^2 - (y')^2 \right] dx$ is stationary, given that :

$$\int_0^1 y^2 dx = 2 \ , \ y(0) = 0 \ , \ y(1) = 0 \ .$$

5. Show that the function g(x) = 1 - x is a solution of the integral equation:

$$\int_0^x e^{x-t} g(t) dt = x.$$

Or

Solve $g(x) = \cos x + \lambda \int_0^{\pi} \sin x \ g(t) dt$.

6. Find the resolvent kernels for Volterra integral equations with the following kernels:

$$k(x,t) = x - t$$

Or

Solve by classical Fredholm theory:

$$g(x) = e^{x} + \lambda \int_{0}^{1} 2e^{x} e^{t} g(t) dt$$

Section-C

- 7. (i) Reduce the equation $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form and hence solve it.
 - (ii) Find general solution of one-dimensional heat equation in Cartesian form :

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$$

8. (i) Determine the normalized eigenfunctions of problem:

$$y'' + \lambda y = 0$$
$$y(0) = 0$$
$$y'(1) + y(1) = 0$$

- (ii) Solve the BVP -y'' = f(x), y(0) = 0, y(1) + y'(1) = 0 by determining the Green's function and expressing the solution as a definite integral.
- 9. (i) If a particle moving with a force perpendicular to and proportional to its distance from the line of zero velocity, show that the path of quickest descent is a circle.
 - (ii) Find the equations of the curves for which the functional

$$\int_0^1 \left[\left(y' \right)^2 + 12xy \right] dx$$

can be extremised. Also given that y(0) = 0 and y(1) = 1.

10. (i) Form an integral equation corresponding to the differential equation

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$

with the initial conditions y(0) = 1; y'(0) = 0.

(ii) Using iterative method, solve the following integral equation

$$g(x) = \frac{5x}{6} + \frac{1}{2} \int_0^1 xt \ g(t) \ dt$$

11. (i) Solve the following integral equation:

$$g(x) = 1 + \lambda \int_0^{\pi} \sin(x+t) g(t) dt$$

(ii) Solve the following integral equation, with the aid of resolvent kernel:

$$g(x) = 1 + \lambda \int_0^x e^{3(x-t)} g(t) dt$$

)