Roll	No.		
		•	

Total No. of Questions: 11

[Total No. of Printed Pages : 4

APP-1067

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS

Paper - III

(Mathematical Methods)

Time: 3 Hours [Maximum Marks: 100

Section-A (Marks : $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section-B (Marks: $4 \times 5 = 20$)

Note: Answer all *five* questions. Each question has internal choice (Answer limit **200** words). Each question carries **4** marks.

Section–C (Marks: $20 \times 3 = 60$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **20** marks.

Section-A

- 1. (i) Write the statement of Gauss theorem for hypergeometric function.
 - (ii) Write the orthogonality property formula for Legendre polynomials.
 - (iii) Write the integral representation of Bessel function.

BR-397 (1) APP-1067 P.T.O.

- (iv) Expand x^n in series of Hermite polynomial.
- (v) Find the Laplace transform of:

$$L\{\sin^2 3x\}$$

(vi) Find the inverse Laplace transform of :

$$L^{-1}\left\{\frac{1}{p}\sin\frac{1}{p}\right\}$$

- (vii) Define inner product of tensors.
- (viii) Define Permutation tensor.
- (ix) Define Christoffel symbol of first kind and second kind.
- (x) Prove that:

$$\int_0^\infty e^{-pt} \mathcal{L}_n(t) dt = \frac{1}{p} \left(1 - \frac{1}{p} \right)^n$$

Section-B

2. State and prove Kummer's first transformation theorem.

Or

Prove the result:

$$_{2}F_{1}(-n, \alpha + n; \gamma; 1) = \frac{(-1)^{n}(1 + \alpha - \gamma)_{n}}{(\gamma)_{n}}$$

3. Prove that:

$$(n + 1) P_n(x) = P'_{n+1}(x) - xP'_n(x)$$

Or

Prove that:

$$2J'_{n}(x) = J_{n-1}(x) - J_{n+1}(x)$$

4. Prove that:

$$H''_n(x) = 2x H'_n(x) - 2n H_n(x)$$

Or

If:

$$A_{ij} = 0 \quad i \neq j$$
$$A_{ij} \neq 0 \quad i = j$$

then prove that:

$$B^{ij} = 0$$
 if $i \neq j$
 $B^{ii} = \frac{1}{A_{ii}}$ if $i = j$

5. Prove that g_{ij} is a covarient tensor of rank 2.

Or

Prove the result:

$$[ij, h] = g_{kh} \begin{bmatrix} k \\ i, j \end{bmatrix}$$

6. Find the Laplace transform of $L\{xe^{ax} \sin bx\}$.

Or

Solve the Laplace differential equation $(D^2 + 1) y = 0$ where :

$$y(0) = 1$$

$$y'(0) = 0$$

Section-C

7. Show that:

$$\int_{x}^{\infty} e^{-y} \mathcal{L}_{n}^{\alpha}(y) dy = e^{-x} \left[\mathcal{L}_{n}^{\alpha}(x) - \mathcal{L}_{n-1}^{\alpha}(x) \right]$$

8. Prove that:

$$e^{-x^2} H_n(x) = (-1)^n \frac{d^n}{dx^n} \left(e^{-x^2} \right)$$

- 9. Prove that the law of transformation of covarient tensor form a group or possess transitive property.
- 10. State and prove Ricci's theorem for covarient derivatives of tensors.
- 11. Prove for Laplace transform of exponential function :

$$L\left\{E_i(x)\right\} = \frac{1}{p}\log(p+1)$$