Roll	No.	:		
------	-----	---	--	--

Total No. of Questions: 11

[Total No. of Printed Pages : 4

APF-2166

M.A./M.Sc. (Final) Examination, 2022 MATHEMATICS

Paper - VI

(Topology and Functional Analysis)

Time: 3 Hours] [Maximum Marks: 100

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all *ten* questions (Answer limit **50** words). Each question carries **2** marks.

Section–B (Marks : $4 \times 5 = 20$)

Note: Answer all *five* questions. Each question has internal choice (Answer limit **200** words). Each question carries **4** marks.

Section–C (Marks : $20 \times 3 = 60$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **20** marks.

Section-A

- 1. (i) What do you mean by topological equivalence? Define.
 - (ii) Homeomorphism
 - (iii) T₁-axiom
 - (iv) Compact space

BR-178 (1) APF-2166 P.T.O.

- (v) Bounded linear transformation
- (vi) Open mapping
- (vii) Orthogonal complement
- (viii) What does Hilbert space reflexive mean? Define.
- (ix) Unitary operator
- (x) Adjoint operator

Section-B

2. Show that a subset of a topological space is open iff it is neighbourhood of each of its points.

Or

Let (Y, V) be a subspace of a topological space (X, T) and let (Z, W) be a subspace of (Y, V). Then show that (Z, W) is a subspace of (X, T).

3. Show that every topology finer than a T_1 -topology on any set X is a T_1 -topology.

Or

Show that every finite Hausdorff space is discrete.

4. Let N be a normed linear space and M be a subspace of N. Then show that the closure \overline{M} of M is also a subspace of N.

Or

If N and N' are normed linear spaces and T : N \rightarrow N'. Then show that :

$$\| T \| = \sup \left\{ \frac{\| Tx \|}{\| x \|}, \ x \in \mathbb{N}, \ x \neq 0 \right\} \Leftrightarrow \| T \| = \sup \left\{ \| Tx \|, \ x \in \mathbb{N} \& \| x \| \leq 1 \right\}$$

5. If X is an IPS, then show that $||x|| = (x, x)^{1/2}$ is a norm on X. (IPS-inner product space).

Or

If S is a non-empty subset of a Hilbert space H, then show that S^1 is a closed linear subspace of H.

BR-178 (2) APF-2166

6. Let T be an operator on a Hilbert space H. Then show that there exists a unique operator T^* on H such that for all $x, y \in H$, $(Tx, y) = (x, T^*y)$.

Or

If T is an operator on a Hilbert space H, then show that T is normal iff its real and imaginary parts commute.

Section-C

- 7. (i) Show that the mapping $f:(X, T) \to (X, T^*)$ is continuous iff $T^* \subset T$, (X, T), (X, T^*) are topological spaces.
 - (ii) In any topological space, show that :

$$\bar{A} = A \cup D(A)$$

- 8. (i) Show that a metric space is regular.
 - (ii) Show that an open continuous image of a locally compact space is locally compact.
- 9. (i) Let N and N' be normal linear spaces. Then show that N × N' is a normed linear space with coordinate wise operations and the norm $\|(x, y)\| = \|x\| + \|y\|, x \in \mathbb{N}, y \in \mathbb{N}'.$
 - (ii) Let M be a closed subspace of a normed linear space N and let x_0 be a vector not in M. If d is the distance of x_0 from M, then show that there exists a functional f_0 in N* such that :

$$f_0(M) = 0, f_0(x_0) = 1 \text{ and } ||f_0|| = \frac{1}{d}$$

- 10. (i) If M is a closed linear subspace of a Hilbert space H, then show that : $H = M \,\oplus\, M^1$
 - (ii) If $\{e_i\}$ is an orthonormal set in a Hilbert space H and if x is any vector in H, then show that the set $S = \{e_i : (x, e_i) \neq 0\}$ is either empty or countable.

- 11. (i) Let H be a given Hilbert space and T* be the adjoint of operator T. Then show that T* is bounded linear transformation.
 - (ii) If $<T_n>$ is a sequence of self adjoint operators on a Hilbert space H and if $<T_n>$ converges to an operator T, then show that T is self adjoint.