
Introduction

Jyoti Lakhani

What is Java

• A general purpose Programming Language

• Most Famous Object Oriented Programming

Language.

• Suited for the web and networked services,

applications, platform independent desktops,

robotics, embedded devices.

Jyoti Lakhani

Java No Longer a

Programming Language

but a Platform

Jyoti Lakhani

History of Java

• Developed by James Gosling, Mike Sheridan,

Patrick Naughton et. al;

• When working on green project;

• The goal of this project was to control

microprocessor embedded in electronic

devices.

• To perform this task, a platform independent,

reliable, and compact language was needed

Jyoti Lakhani

History of Java

• Gosling was given task to identify the proper

programming language for the project.

• Gosling decided to develop a new language to

avoid the problems of current programming

languages(C++ especially)

• The new language developed for this purpose

is called “Oak”

Jyoti Lakhani

History of Java

It consist of –

• Oak Programming Language

• An Operating System

• An User Interface

• A Hardware

Jyoti Lakhani

Java Versions

• JDK 1.0 1996

• JDK 1.1 1997

• JDk 1.2 1998 (Java 2)

• JDK 1.3 2000 (Java 2)

• JDK 1.4 2002 (Java 2)

• JDK 5.0 2004 (J2SE 5.0)

• JDK 6.0 2006 (Java SE 6)

• JDK 7.0 2010

Jyoti Lakhani

With the advancement of Java and its

widespread popularity, multiple

configurations were built to suite various

types of platforms.

Ex: J2EE for Enterprise Applications

 J2ME for Mobile Applications.

 Jyoti Lakhani

• Sun Microsystems has renamed the new J2

versions as Java SE, Java EE and Java ME

respectively.

• Java is guaranteed to be Write Once, Run

Anywhere.

Jyoti Lakhani

Jyoti Lakhani

Object Oriented

• Java, everything is an Object.

• Java can be easily extended since it is based

on the Object model.

Jyoti Lakhani

Platform independent

• Unlike many other programming languages

including C and C++, when Java is compiled, it

is not compiled into platform specific

machine, rather into platform independent

byte code. This byte code is distributed over

the web and interpreted by virtual Machine

(JVM) on whichever platform it is being run.

Jyoti Lakhani

Simple

• Java is designed to be easy to learn. If you

understand the basic concept of OOP Java

would be easy to master.

Jyoti Lakhani

Secure

• With Java's secure feature it enables to

develop virus-free, tamper-free systems.

Authentication techniques are based on

public-key encryption.

Jyoti Lakhani

Architectural-neutral

• Java compiler generates an architecture-

neutral object file format which makes the

compiled code to be executable on many

processors, with the presence of Java runtime

system.

Jyoti Lakhani

Portable

• Being architectural-neutral and having no

implementation dependent aspects of the

specification makes Java portable.

• Compiler in Java is written in ANSI C

Jyoti Lakhani

Robust

• Java makes an effort to eliminate error prone

situations by emphasizing mainly on compile

time error checking and runtime checking.

Jyoti Lakhani

Multithreaded

• With Java's multithreaded feature it is

possible to write programs that can do many

tasks simultaneously. This design feature

allows developers to construct smoothly

running interactive applications.

Jyoti Lakhani

Interpreted

• Java byte code is translated on the fly to

native machine instructions and is not stored

anywhere. The development process is more

rapid and analytical since the linking is an

incremental and light weight process.

Jyoti Lakhani

High Performance

• With the use of Just-In-Time compilers, Java

enables high performance

Jyoti Lakhani

Distributed

• Java is designed for the distributed

environment of the internet

Jyoti Lakhani

Dynamic

• Java is considered to be more dynamic than C

or C++ since it is designed to adapt to an

evolving environment. Java programs can

carry extensive amount of run-time

information that can be used to verify and

resolve accesses to objects on run-time.

Jyoti Lakhani

Java Environment

Java Programming Language

JDK JSL

Java Programming Environment

Jyoti Lakhani

Java Environment

(Java Development Environment)

A set of Programming Tools

(Java Standard Library)

(A collection of Classes and Methods)

It is also called Java API

Jyoti Lakhani

Java Development Kit

(JDK)

• A Software Package

• Sun Microsystems made it available free on

the website

• Includes all basic components of Java

Environment

Jyoti Lakhani

Java Development Kit
(JDK) - Tools

Jyoti Lakhani

Java Development Kit
File Structure(C:\jdk)

jdk

include

bin

lib

jre demo

Src.zip

Jyoti Lakhani

• A collection of utilities that help u to develop,

execute, debug and document java programs

• Include-

– javac.exe

– java.exe

– javadoc.exe

– appletviewer.exe

Java Development Kit
bin

Jyoti Lakhani

• Contains files that support native code

programming

• integrate java with other programming

languages.

• Include-

– jawet.h

– jni.h

Java Development Kit
include

Jyoti Lakhani

Un T

• Root directory of Java Run Time Environment

• Includes

– JVM(Java Virtual Machine)

– runtime class libraries

– java application launcher

Java Development Kit
jre

Jyoti Lakhani

• Includes additional class libraries and support

files required by the development tools

– htmlconvertor

– jconsole

Java Development Kit
lib

Jyoti Lakhani

• Consist of sample programs with source code

Java Development Kit
demo

Jyoti Lakhani

• Compressed files contain source code for java

API classes(that are included in JDK)

• We can unpack these files.

• The source code in these files helps

developers to learn and use the java

programming language

Java Development Kit
src.zip

Jyoti Lakhani

Jyoti Lakhani

• A command line tool that reads java source

code files and compiles it into executable byte

code classes.

Hello.java
Hello.class

javac [Options] [File Name]

Example- Javac Hello.java

Syntax

Jyoti Lakhani

• Java programs are compiled to byte code and

not in native code.

• Hence it can not be run on the machine

directly.

• Java Runtime Interpreter implements Java

Virtual Machine(JVM) and runs java

applications.

Jyoti Lakhani

• It is used to run java .class file by doing

following two things-

– Starting Java Runtime Environment(JRE)

– Loading the specified class

– Invoking the main() method

Jyoti Lakhani

Hello.class

java [Options] [Class Name] [Arguments]

Example- Java Hello

Syntax

OUTPUT

Jyoti Lakhani

• A command line tool

• Used to run applet without the need of a web

browser

Jyoti Lakhani

• Command line tool helps

• Used to find out and fixes bugs in java

programs

 jdb [Options] [Class Name] [Arguments]

Jyoti Lakhani

• A command line tool

• Reads java bytecode class files

• Print human readable version of API defined

by those classes.

Jyoti Lakhani

• A command line tool

• Produces two c files

– C Header file

– C stub file

• These C files are used to implement native

methods

Jyoti Lakhani

• The header file contains the declaration for

the C implementation function and structure

definition

• Stub file provide the glue that binds the java

method invocations and object references to

the C code

• The header file name is appended with .h

• The stub file name is appended with .c

Jyoti Lakhani

• A command line tool

• Used to generate documentation in the form

of HTML pages

Jyoti Lakhani

txt • Text Editor

.java • Java Source Code

Javac • Java Compiler

.class • Java Class File

Java • Java Interpreter

Java
• Java Program Output

javadoc HTML Files

javah Header and Stub Files

jdb

Jyoti Lakhani

Java Virtual Machine (JVM)

Jyoti Lakhani

• A Component of Java System

• It interprets and executes the instructions in

our class files.

Jyoti Lakhani

Figure 1: Memory configuration by the JVM.

ea

Class Files

Execution

Engine

Native Method

Interface

Native Method

Libraries

Jyoti Lakhani

• Each instance of the JVM has one method area,
one heap, and one or more stacks - one for each
thread

• When JVM loads a class file, it puts its information
in the method area

• As the program runs, all objects instantiated are
stored in the heap

• The stack area is used to store activation records as
a program runs

Jyoti Lakhani

Stack

Frame

Stack

Frame

Stack

Frame

Stack

Frame

Stack

Frame

Stack

Frame

Object Object

Object Object

Object Object

Class

Data

Class

Data

Class

Data

Class

Data

Class

Data

Class

Data

Method Area Heap Stack Area

Thread 1 Thread 2

Jyoti Lakhani

• The class loader performs three main functions of

JVM, namely:

• The linking process consists of three sub-tasks,

namely,

Jyoti Lakhani

Load

Link

Initialize

Verify

Prepare

Resolve

Jyoti Lakhani

• Loading means reading the class file for a type, parsing it to get its

information, and storing the information in the method area.

• For each type it loads, the JVM must store the following information

in the method area:

– The fully qualified name of the type

– The fully qualified name of the type's direct superclass or if the type is an

interface, a list of its direct super interfaces .

– Whether the type is a class or an interface

– The type's modifiers (public, abstract, final, etc)

– Constant pool for the type: constants and symbolic references.

– Field info : name, type and modifiers of variables (not constants)

– Method info: name, return type, number & types of parameters, modifiers,

bytecodes, size of stack frame and exception table.

Jyoti Lakhani

• The end of the loading process is the creation of an instance of java.lang.Class for the loaded
type.

• The purpose is to give access to some of the information captured in the method area for
the type, to the programmer.

• Some of the methods of the class java.lang.Class are:

• Note that for any loaded type T, only one instance of java.lang.Class is created even if T is
used several times in an application.

• To use the above methods, we need to first call the getClass() method on any instance of T
to get the reference to the Class instance for T.

public String getName()

public Class getSupClass()

public boolean isInterface()

public Class[] getInterfaces()

public Method[] getMethods()

public Fields[] getFields()

public Constructor[] getConstructors()

Jyoti Lakhani

Instances of Class objects created in the heap at runtime
Jyoti Lakhani

import java.lang.reflect.Method; // Required!

//you must import your Circle class

public class TestClassClass{

 public static void main(String[] args) {

 String name = new String(“Ahmed”);
 Class nameClassInfo = name.getClass();

 System.out.println("Class name is : “ + nameClassInfo.getName());

 System.out.println("Parent is : “ + nameClassInfo.getSuperclass());

 Method[] methods = nameClassInfo.getMethods();

 System.out.println("\nMethods are: ");

 for(int i = 0; i < methods.length; i++)

 System.out.println(methods[i]);

 }

}

Jyoti Lakhani

Verify

Prepare

Resolve

Jyoti Lakhani

• The next process handled by the class loader is Linking. This involves three sub-

processes: Verification, Preparation and Resolution

• Verification is the process of ensuring that binary representation of a class is

structurally correct

• The JVM has to make sure that a file it is asked to load was generated by a valid

compiler and it is well formed

• Class B may be a valid sub-class of A at the time A and B were compiled, but class A

may have been changed and re-compiled

• Example of some of the things that are checked at verification are:

– Every method is provided with a structurally correct signature

– Every instruction obeys the type discipline of the Java language

– Every branch instruction branches to the start not middle of another

instruction

Jyoti Lakhani

• In this phase, the JVM allocates memory for the class (i.e static) variables

and sets them to default initial values.

• Note that class variables are not initialized to their proper initial values until the

initialization phase - no java code is executed until initialization.

• The default values for the various types are shown below:

Jyoti Lakhani

• Resolution is the process of replacing symbolic names for types, fields and methods used

by a loaded type with their actual references.

• Symbolic references are resolved into a direct references by searching through the method

area to locate the referenced entity.

• For the class below, at the loading phase, the class loader would have loaded the classes:

TestClassClass, String, System and Object.

• The names of these classes would have been stored in the constant pool for TestClassClass.

• In this phase, the names are replaced with their actual references.

public class TestClassClass{

 public static void main(String[] args){

 String name = new String(“Ahmed”);
 Class nameClassInfo = name.getClass();

 System.out.println("Parent is: “ + nameClassInfo.getSuperclass());

 }

}

Jyoti Lakhani

• This is the process of setting class variables to their proper initial values - initial values desired by

the programmer.

• Initialization of a class consists of two steps:

– Initializing its direct superclass (if any and if not already initialized)

– Executing its own initialization statements

• The above imply that, the first class that gets initialized is Object.

• Note that static final variables are not treated as class variables but as constants and are

assigned their values at compilation.

class Example1 {

 static double rate = 3.5;

 static int size = 3*(int)(Math.random()*5);

 ...

}

class Example2 {

 static final int angle = 35;

 static final int length = angle * 2;

 ...

}

Jyoti Lakhani

• After a class is loaded, linked, and initialized, it is ready for use. Its

static fields and static methods can be used and it can be instantiated.

• When a new class instance is created, memory is allocated for all its instance

variables in the heap.

• Memory is also allocated recursively for all the instance variables declared in its

super class and all classes up is inheritance hierarchy.

• All instance variables in the new object and those of its superclasses are then

initialized to their default values.

• The constructor invoked in the instantiation is then processed according to the

rules shown on the next page.

• Finally, the reference to the newly created object is returned as the result.

Jyoti Lakhani

Rules for processing a constructor:

1. Assign the arguments for the constructor to its parameter variables.

2. If this constructor begins with an explicit invocation of another constructor in the

same class (using this), then evaluate the arguments and process that constructor

invocation recursively.

3. If this constructor is for a class other than Object, then it will begin with an explicit

or implicit invocation of a superclass constructor (using super). Evaluate the

arguments and process that superclass constructor invocation recursively.

4. Initialize the instance variables for this class with their proper values.

5. Execute the rest of the body of this constructor.

Jyoti Lakhani

class GrandFather {

 int grandy = 70;

 public GrandFather(int grandy) {

 this.grandy = grandy;

 System.out.println("Grandy: "+grandy);

 }

}

class Father extends GrandFather {

 int father = 40;

 public Father(int grandy, int father) {

 super(grandy);

 this.father = father;

 System.out.println("Grandy: "+grandy+" Father: "+father);

 }

}

class Son extends Father {

 int son = 10;

 public Son(int grandy, int father, int son) {

 super(grandy, father);

 this.son = son;

 System.out.println("Grandy: "+grandy+" Father: "+father+" Son: "+son);

 }

}

public class Instantiation {

 public static void main(String[] args) {

 Son s = new Son(65, 35, 5);

 }

}
Jyoti Lakhani

