Total No. of Questions: 11]

[Total No. of Printed Pages : 3

APMA-364

M.A./M.Sc. (Previous) Examination, 2023 MATHEMATICS

Paper - I

(Advanced Abstract Algebra)

Time: 3 Hours] [Maximum Marks: 100

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all *ten* questions (Answer limit **50** words). Each question carries **2** marks.

Section–B (Marks : $4 \times 5 = 20$)

Note: Answer all *five* questions. Each question has internal choice (Answer limit **200** words). Each question carries **4** marks.

Section–C (Marks: $20 \times 3 = 60$)

Note:— Answer any *three* questions out of five (Answer limit **500** words). Each question carries **20** marks.

Section-A

- 1. Define the following:
 - (i) *p*-group
 - (ii) Algebraic extension
 - (iii) Nilpotent group
 - (iv) Galois extension

BRI-325 (1) APMA-364 P.T.O.

- (v) Eisentein criterion
- (vi) Minimal polynomial
- (vii) Annihilator
- (viii) Adjoint of a linear transformation
- (ix) Quadratic form
- (x) Write Bessel's inequality for finite dimensional inner product space.

Section-B

2. Deduce the class equation of symmetric group S_3 .

Or

If G is a group of order p^2 , p is a prime number, then show that G is abelian.

3. Show that a subgroup of a solvable group is solvable.

Or

Show that homomorphic image of a nilpotent group is nilpotent.

4. Show that a linear operator T can be represented by a diagonal matrix D if there exists a basis B of vector space V consisting of eigen vectors of T.

Or

Show that minimal polynomial m(t) of a Matrix (linear operator) A divides every polynomial that has A as a zero.

5. Find the basis $\{f_1, f_2, f_3\}$ which is dual to the basis $\{e_1, e_2, e_3\}$ of \mathbb{R}^3 , where $e_1 = (1, -1, 3), e_2 = (0, 1, -1), e_3 = (0, 3, -2).$

Or

Suppose vector space V is finite dimensional and W is supspace of V. Then show that :

$$\dim W + \dim W^{\circ} = \dim V$$

6. Find the symmetric matrix that corresponds to the quadratic form :

$$q(x, y, z) = 3x^2 + 4xy - y^2 + 8xz - 6yz + z^2$$

Or

Let $u = (\alpha_1, \alpha_2)$, $v = (\beta_1, \beta_2)$. Is $f(u, v) = 2\alpha_1\beta_2 - 3\alpha_2\beta_1$ a bilinear form on \mathbb{R}^2 ? Give reason for your answer.

BRI-325 (2) APMA-364

Section-C

- 7. (i) Determine the simple algebraic extension of the set of rational numbers generated by $2 x^2$.
 - (ii) Show that every finite separable extension is simple.
- 8. (i) Show that any field of characteristic 0 is perfect.
 - (ii) Let K be the field of complex numbers and F is the field of real numbers, then show that K is a normal extension of F.
- 9. (i) If f(x) and g(x) are primitive polynomials, then show that f(x)g(x) is a primitive polynomial.
 - (ii) Show that a scalar λ is eigen value of linear operator T iff linear operator $(\lambda I T)$ is singular.
- 10. (i) Let T be a linear operator on a finite dimensional inner product space V(F). Then show that there exists a unique linear operator T* on V such that $(T(u), V) = (u, T^*(v)), \forall u_1 v \in V$.
 - (ii) Show that the general polynomial of degree $n \ge 5$ is not solvable by radicals.
- 11. (i) Show that an orthogonal set of non-zero vectors is linearly independent.
 - (ii) Find the orthonormal basis for $V_3(R)$ corresponding to the basis (x_1, x_2, x_3) , where $x_1 = (1, 1, 1)$, $x_2 = (0, 1, 1)$, $x_3 = (0, 0, 1)$.