Total No. of Questions: 11

BI-450

[Total No. of Printed Pages : 3

ASP-652

P.T.O.

ASP-652

M.A./M.Sc. (Final) Examination, 2021 MATHEMATICS

Paper - Opt-IX

(Relativity and Cosmology)

Time : 1½ Hours] [Maximum Marks : 100 Section-A (Marks : $2 \times 10 = 20$) Answer all ten questions (Answer limit 50 words). Each question carries Note: 2 marks. (खण्ड-अ) (अंक : $2 \times 10 = 20$) सभी दस प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 50 शब्द)। प्रत्येक प्रश्न 2 अंक का है। नोट :-Section-B $(Marks: 4 \times 5 = 20)$ Answer all five questions. Each question has internal choice (Answer limit *Note* :-200 words). Each question carries 4 marks. (खण्ड–ब) (अंक : $4 \times 5 = 20$) सभी **पाँच** प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न में विकल्प का चयन कीजिए (उत्तर-सीमा नोट :-200 शब्द)। प्रत्येक प्रश्न 4 अंक का है। Section-C (Marks : $20 \times 3 = 60$) *Note* :-Answer any three questions out of five (Answer limit 500 words). Each question carries 20 marks. (खण्ड–स) (अंक : $20 \times 3 = 60$) पाँच में से किन्हीं तीन प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 500 शब्द)। प्रत्येक प्रश्न 20 अंक का है।

(1)

		Sec	tion–	- A	
1.	(i)	Define Particle Acceleration.			
	(ii)	Define Parallel Velocity.			
	(iii)	Define Equivalence of Mass.			
	(iv)	Define Porper Time.			
	(v)	Define General Covariance.			
	(vi)	Define Singularity.			
	(vii)	Write Kepler's Law.			
	(viii)	Define Einstein Tensor.			
	(ix)	Write Hubble Law.			
	(x)	Define Weyl's Postulate.			
		Sec	tion–	-В	
2.	Derive Special Lorentz Transformation Equation.				
			Or		
	Derive Relativistic transformation formula for velocity.				
3.	Derive transformation formula for momentum and energy.				
			Or		
	Derive space-like.				
4.	Derive Newtonian approximation of equation of motion.				
			Or		
	Explain reduction of Einstein field equation to Poisson's equation.				
5.	Discu	uss Radar Echo delay.			
			Or		
Derive Schwarz's child interior metric.					
BI-450			2)	ASP-652

6. Derive Lorentz invariance of Maxwell's equations.

Or

Discuss static Cosmological models.

Section-C

- 7. Derive Lorentz-Fitzgerald contraction formula.
- 8. Write short notes on the following:
 - (i) Minkowski space
 - (ii) Time like
 - (iii) Null come
 - (iv) Proper time
- 9. Derive relativistic differential equation for orbit of the planet.
- 10. Write and discuss three crucial of tests of general relativity.
- 11. Discuss energy-momentum tensor for electromagnetic field.