Roll	No.	:	

Total No. of Questions: 11]

[Total No. of Printed Pages : 4

APG-1076

M.A./M.Sc. (Previous) Examination, 2021 MATHEMATICS

Paper - III

(Mathematical Methods)

Time: 1½ Hours] [Maximum Marks: 100

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section–B (Marks : $4 \times 5 = 20$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 4 marks.

Section–C (Marks: $20 \times 3 = 60$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **20** marks.

Section–A 2 each

1. (i) Find the value of:

$$\frac{d^2}{dx^2} \{ {}_2F_1(a,b;c;x) \}$$

BI-751 (1) APG-1076 P.T.O.

- (ii) Write the Rodrigues' formula for Legendre polynomial.
- (iii) Write the orthogonal property for Bessel function.
- (iv) Find the value of $H_3(x)$, where $H_n(x)$ is Hermite polynomial.
- (v) Write generating function for Laguerre polynomials.
- (vi) Find the inverse Laplace transform:

$$L^{-1} \left\{ \log_e \left(\frac{s+1}{s-1} \right) \right\}$$

(vii) Find Laplace transform:

$$L\left\{t\,e^{-at}\sin at\right\}$$

- (viii) Define Null Geodesics.
- (ix) Show that Kronecker delta is a mixed tensor of rank two and it is invariant.
- (x) Show that the number of independent component of Christoffel symbol are :

$$\frac{n^2(n+1)}{2}$$

Section-B

4 each

2. Prove that:

$$2x H_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$$

$$\mathbf{Or}$$

Prove that:

$$\int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \frac{\pi}{2} {}_{2}F_1\left(\frac{1}{2}, \frac{1}{2}; 1; k^2\right)$$

3. Prove that Beltrami's result :

$$(2n +1) (x^2 - 1) P'_n = n (n +1) (P_{n+1} - P_{n-1})$$

BI-751 (2) APG-1076

Find the value of:

$$I = \int x^3 J_0(x) dx$$

4. Show that:

$$\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^r} (\sqrt{g} B^{pqr})$$

is a tensor, where B^{pqr} is skew-symmetric tensor.

Or

Express div A^i in term of physical component of cylindrical polar co-ordinates.

5. Prove Bianchi identity:

$$R_{ijk,l}^{\beta} + R_{ikl,j}^{\beta} + R_{ilj,k}^{\beta} = 0$$

Or

For the V_2 whose line element is given:

$$dS^2 = du^2 + G^2 dv^2$$

where G is function of u and v. Show that :

$$R_{1212} = \ominus G \frac{\partial^2 G}{\partial u^2}$$

6. Find the Laplace transform of $\sin \sqrt{x}$. Hence find :

$$L\left\{\frac{\cos\sqrt{x}}{\sqrt{x}}\right\} = \left(\frac{\pi}{s}\right)^{1/2} e^{-1/4s}$$

Or

Solve by using Laplace transform $y'' + 4y' + 3y = e^{-t}$, y = y(t)

given that y(0) = y'(0) = 1.

BI-751

(3)

APG-1076 P.T.O.

Section–C 20 each

7. (a) Prove that:

$$L_n(x) = \frac{e^x}{|n|} \frac{d^n}{dx^n} (x^n e^{-x})$$

(b) Prove that:

$$H_n(x) = 2^n \left\{ \exp\left(-\frac{1}{4} \frac{d^2}{dx^2}\right) \right\} x^n$$

- 8. (a) Prove that all roots of $P_n(x) = 0$ are real and lies between -1 and +1.
 - (b) Prove that:

$$J_n(x) = (-2)^n x^n \frac{d^n}{d(x^2)^n} \{J_0(x)\}$$

9. (a) Calculate the Christoffel symbols corresponding to metric :

$$dS^{2} = (dx')^{2} + (x')^{2} (dx^{2})^{2} + (x')^{2} (\sin x^{2})^{2} (dx^{3})^{2}$$

- (b) The covariant derivative of a covariant vector is symmetric if and only if the vector is gradient.
- 10. (a) Show that on the surface of a sphere, all the great circles are geodesics while no other circle is geodesics.
 - (b) If the metric of a two-dimensional flat space is:

$$dS^2 = f(r) [(dx')^2 + (dx^2)^2]$$

Show that $f(r) = c r^k$, where $r^2 = (x')^2 + (x^2)^2$ here c, k are constants.

11. (a) State Convolution theorem. Using Convolution theorem find:

$$L^{-1}\left\{\frac{1}{(S+2)^2(S-2)}\right\}$$

(b) ty''(t) + (1 - 2t)y'(t) - 2y(t) = 0 given that y(0) = 1 and y'(0) = 2.