Introduction to Logic Gates

AND Gate

It is an electronic circuit, which generates an output signal of 1 if and only if all input signals are also 1

An AND gate is the physical realization of the logical multiplication (AND operation)

sthpppsselnputiss ${ }^{1} 0$

Block Diagram of AND Gate

1
1
$=$
1

INPUT		OUTPUT
1	1	1
1	0	0
0	1	0
0	0	0

OUTPUT

Block Diagram of AND Gate

INPUT		OUTPUT
1	1	1
1	0	0
0	1	0
0	0	0

Block Diagram of AND Gate

INPUT		OUTPUT
1	1	1
1	0	0
0	1	0
0	0	0

Block Diagram of AND Gate

INPUT		OUTPUT
1	1	1
1	0	0
0	1	0
0	0	0

OR Gate

It is the physical realization of logical OR

Block Diagram of OR Gate

$1+1$ = 1

INPUT		OUTPUT
1	1	1
1	0	1
0	1	1
0	0	0

Block Diagram of OR Gate

A

B
$1+0 \quad=1$

INPUT		OUTPUT
1	1	1
1	0	1
0	1	1
0	0	0

Block Diagram of OR Gate

0
$+$
1
$=$
1

INPUT		OUTPUT
1	1	1
1	0	1
0	1	1
0	0	0

Block Diagram of OR Gate

0
$+$
$0=$
0

INPUT		OUTPUT
1	1	1
1	0	1
0	1	1
0	0	0

NOT Gate

It is an electronic circuitthat generates an output signal, which is reverse of input signal

It is the physical realization of complementation operation

INPUT	OUTPUT
0	1
1	0

A 0

1 Output

Not Gate is also called inverter because it inverts the input.

NOT Gate

INPUT	OUTPUT
0	1
1	0

Not AND Gate - NOT + AND gate

 It is a combination of NOT and AND gates It is Complemented AND Gate

Equation of NAND Gate

$$
\mathrm{A} \uparrow \mathrm{~B}=\overline{\mathrm{A} \cdot \boldsymbol{B}}=\bar{A}+\bar{B}
$$

Truth Table
INPUT OUTPUT $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$

Not AND Gate - NOT + AND gate

 It is a combination of NOT and AND gates It is Complemented AND Gate

Equation of NAND Gate

$$
\mathrm{A} \uparrow \mathrm{~B}=\overline{\mathrm{A} \cdot \boldsymbol{B}}=\bar{A}+\bar{B}
$$

Truth Table
INPUT OUTPUT $\mathbf{1}$ 1 0 $\mathbf{1}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{0}$ 1 1 0 0 1

Not AND Gate - NOT + AND gate

 It is a combination of NOT and AND gates It is Complemented AND Gate

Equation of NAND Gate

$$
\mathrm{A} \uparrow \mathrm{~B}=\overline{\mathrm{A} \cdot \boldsymbol{B}}=\bar{A}+\bar{B}
$$

Truth Table
INPUT OUTPUT $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$

Not AND Gate - NOT + AND gate

 It is a combination of NOT and AND gates It is Complemented AND Gate

Equation of NAND Gate

$$
\mathrm{A} \uparrow \mathrm{~B}=\overline{\mathrm{A} \cdot \boldsymbol{B}}=\bar{A}+\bar{B}
$$

Symbol of NOR Gate

NOT - OR Gate
NOT Gate + OR Gate
It is complement OR gate

$1+1=0$

Equation of NOR Gate
$\mathrm{A} \uparrow \mathrm{B}=\overline{\boldsymbol{A + B}}=\overline{\boldsymbol{A}} \cdot \bar{B}$
Truth Table
$\left.\begin{array}{|c||c|}\hline \text { INPUT } & \text { OUTPUT } \\ \hline \hline 1 & 1 \\ \hline 1 & 0 \\ \hline 1 & 0 \\ \hline 0 & 1\end{array}\right]$

Symbol of NOR Gate

NOT - OR Gate
NOT Gate + OR Gate
It is complement OR gate

$1+0=0$

Equation of NOR Gate
$\mathrm{A} \uparrow \mathrm{B}=\overline{\boldsymbol{A + B}}=\overline{\boldsymbol{A}} \cdot \bar{B}$

Truth Table

Symbol of NOR Gate

NOT - OR Gate
NOT Gate + OR Gate
It is complement OR gate

$0+1=0$

Equation of NOR Gate
$\mathrm{A} \uparrow \mathrm{B}=\overline{\boldsymbol{A + B}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}$
Truth Table
$\left.\begin{array}{|c||c|}\hline \text { INPUT } & \text { OUTPUT } \\ \hline \hline 1 & 1\end{array}\right]$

Symbol of NOR Gate

NOT - OR Gate
NOT Gate + OR Gate
It is complement OR gate

$0+0=1$

Equation of NOR Gate
$\mathrm{A} \uparrow \mathrm{B}=\overline{\boldsymbol{A + B}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}$

Truth Table
$\left.\begin{array}{|c||c|}\hline \text { INPUT } & \text { OUTPUT } \\ \hline \hline 1 & 1 \\ \hline \hline 1 & 0\end{array}\right] 0$

