
Lecture 6-10: Data
Manipulation(Data
analysis using R)

Outline
 Creating New Variable
 Operators
 Built-in functions
 Control Structures
 User Defined Functions
 Sorting Data
 Merging Data
 Aggregating Data
 Reshaping Data
 Sub-setting Data
 Data Type Conversions

Introduction
 Once you have access to your data, you

will want to massage it into useful form.
This includes creating new variables
(including recoding and renaming
existing variables), sorting and merging
datasets, aggregating data, reshaping
data, and subsetting datasets (including
selecting observations that meet criteria,
randomly sampling observation, and
dropping or keeping variables).

http://www.statmethods.net/input/index.html
http://www.statmethods.net/management/variables.html
http://www.statmethods.net/management/sorting.html
http://www.statmethods.net/management/merging.html
http://www.statmethods.net/management/aggregate.html
http://www.statmethods.net/management/reshape.html
http://www.statmethods.net/management/subset.html

Introduction
Each of these activities usually involve the

use of R's built-in operators (arithmetic and
logical) and functions (numeric, character,
and statistical). Additionally, you may need
to use control structures (if-then, for, while,
switch) in your programs and/or create
your own functions. Finally you may need
to convert variables or datasets from one
type to another (e.g. numeric to character
or matrix to dataframe).

http://www.statmethods.net/management/operators.html
http://www.statmethods.net/management/functions.html
http://www.statmethods.net/management/controlstructures.html
http://www.statmethods.net/management/userfunctions.html
http://www.statmethods.net/management/typeconversion.html

Creating new
variables

 Use the assignment operator <- to create new
variables. A wide array of operators and functions
are available here.

 # Three examples for doing the same computations

mydata$sum <- mydata$x1 + mydata$x2
mydata$mean <- (mydata$x1 + mydata$x2)/2

attach(mydata)
mydata$sum <- x1 + x2
mydata$mean <- (x1 + x2)/2
detach(mydata)

 mydata <- transform(mydata,
sum = x1 + x2,
mean = (x1 + x2)/2
)

http://www.statmethods.net/management/operators.html
http://www.statmethods.net/management/functions.html

Creating new
variables

Recoding variables
 In order to recode data, you will probably use one or

more of R's control structures.
 # create 2 age categories

mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))
another example: create 3 age categories
attach(mydata)
mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <- "Middle
Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)

http://www.statmethods.net/management/controlstructures.html

Creating new
variables

Recoding variables
 In order to recode data, you will probably use one or

more of R's control structures.
 # create 2 age categories

mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))

another example: create 3 age categories
attach(mydata)
mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <- "Middle Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)

http://www.statmethods.net/management/controlstructures.html

Creating new
variables

Renaming variables
 You can rename variables programmatically or

interactively.
 # rename interactively

fix(mydata) # results are saved on close

rename programmatically
library(reshape)
mydata <- rename(mydata, c(oldname="newname"))

you can re-enter all the variable names in order
changing the ones you need to change.the limitation
is that you need to enter all of them!
names(mydata) <- c("x1","age","y", "ses")

Arithmetic
Operators

Operator Description

+ addition

- subtraction

* multiplication

/ division

^ or ** exponentiation

x %% y modulus (x mod y) 5%%2 is 1

x %/% y integer division 5%/%2 is 2

Logical Operators
Operator Description

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== exactly equal to

!= not equal to

!x Not x

x | y x OR y

x & y x AND y

isTRUE(x) test if x is TRUE

Control Structures
 R has the standard control structures you

would expect. expr can be multiple
(compound) statements by enclosing
them in braces { }. It is more efficient to
use built-in functions rather than control
structures whenever possible.

Control Structures
 if-else
 if (cond) expr

if (cond) expr1 else expr2
 for
 for (var in seq) expr
 while
 while (cond) expr
 switch
 switch(expr, ...)
 ifelse
 ifelse(test,yes,no)

Control Structures
 # transpose of a matrix

a poor alternative to built-in t() function

mytrans <- function(x) {
 if (!is.matrix(x)) {
 warning("argument is not a matrix: returning NA")
 return(NA_real_)
 }
 y <- matrix(1, nrow=ncol(x), ncol=nrow(x))
 for (i in 1:nrow(x)) {
 for (j in 1:ncol(x)) {
 y[j,i] <- x[i,j]
 }
 }
return(y)
}

Control Structures
 # try it

z <- matrix(1:10, nrow=5, ncol=2)
tz <- mytrans(z)

R built-in functions

Almost everything in R is done
through functions. Here I'm only
referring to numeric and character
functions that are commonly used
in creating or recoding variables.

Note that while the examples on
this page apply functions to
individual variables, many can be
applied to vectors and matrices as
well.

Numeric Functions
Function Description

abs(x) absolute value

sqrt(x) square root

ceiling(x) ceiling(3.475) is 4

floor(x) floor(3.475) is 3

trunc(x) trunc(5.99) is 5

round(x, digits=n) round(3.475, digits=2) is 3.48

signif(x, digits=n) signif(3.475, digits=2) is 3.5

cos(x), sin(x), tan(x) also acos(x), cosh(x), acosh(x), etc.

log(x) natural logarithm

log10(x) common logarithm

exp(x) e^x

Character
Functions

Function Description

substr(x, start=n1, stop=n2) Extract or replace substrings in a character vector.
x <- "abcdef"
substr(x, 2, 4) is "bcd"
substr(x, 2, 4) <- "22222" is "a222ef"

grep(pattern, x ,
ignore.case=FALSE, fixed=FALSE)

Search for pattern in x. If fixed =FALSE then pattern is a regular expression. If
fixed=TRUE then pattern is a text string. Returns matching indices.
grep("A", c("b","A","c"), fixed=TRUE) returns 2

sub(pattern, replacement, x,
ignore.case =FALSE, fixed=FALSE)

Find pattern in x and replace with replacement text. If fixed=FALSE then pattern is
a regular expression._x005F_x000b_If fixed = T then pattern is a text string.
sub("\\s",".","Hello There") returns "Hello.There"

strsplit(x, split) Split the elements of character vector x at split.
strsplit("abc", "") returns 3 element vector "a","b","c"

paste(..., sep="") Concatenate strings after using sep string to seperate them.
paste("x",1:3,sep="") returns c("x1","x2" "x3")
paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3")
paste("Today is", date())

toupper(x) Uppercase

tolower(x) Lowercase

http://regexlib.com/CheatSheet.aspx
http://www.ilovejackdaniels.com/regular_expressions_cheat_sheet.pdf

Stat/Prob
Functions

 The following table describes functions
related to probaility distributions. For
random number generators below, you
can use set.seed(1234) or some other
integer to create reproducible pseudo-
random numbers.

Function Description

dnorm(x) normal density function (by default m=0 sd=1)
plot standard normal curve
x <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y, type='l', xlab="Normal Deviate", ylab="Density", yaxs="i")

pnorm(q) cumulative normal probability for q
(area under the normal curve to the right of q)
pnorm(1.96) is 0.975

qnorm(p) normal quantile.
value at the p percentile of normal distribution
qnorm(.9) is 1.28 # 90th percentile

rnorm(n, m=0,sd=1) n random normal deviates with mean m
and standard deviation sd.
#50 random normal variates with mean=50, sd=10
x <- rnorm(50, m=50, sd=10)

dbinom(x, size, prob)
pbinom(q, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)

binomial distribution where size is the sample size
and prob is the probability of a heads (pi)
prob of 0 to 5 heads of fair coin out of 10 flips
dbinom(0:5, 10, .5)
prob of 5 or less heads of fair coin out of 10 flips
pbinom(5, 10, .5)

dpois(x, lamda)
ppois(q, lamda)
qpois(p, lamda)
rpois(n, lamda)

poisson distribution with m=std=lamda
#probability of 0,1, or 2 events with lamda=4
dpois(0:2, 4)
probability of at least 3 events with lamda=4
1- ppois(2,4)

dunif(x, min=0, max=1)
punif(q, min=0, max=1)
qunif(p, min=0, max=1)
runif(n, min=0, max=1)

uniform distribution, follows the same pattern
as the normal distribution above.
#10 uniform random variates
x <- runif(10)

Function Description

mean(x, trim=0,
na.rm=FALSE)

mean of object x
trimmed mean, removing any missing values and
5 percent of highest and lowest scores
mx <- mean(x,trim=.05,na.rm=TRUE)

sd(x) standard deviation of object(x). also look at var(x) for variance and mad(x) for median absolute
deviation.

median(x) median

quantile(x, probs) quantiles where x is the numeric vector whose quantiles are desired and probs is a numeric vector with
probabilities in [0,1].
30th and 84th percentiles of x
y <- quantile(x, c(.3,.84))

range(x) range

sum(x) sum

diff(x, lag=1) lagged differences, with lag indicating which lag to use

min(x) minimum

max(x) maximum

scale(x, center=TRUE,
scale=TRUE)

column center or standardize a matrix.

Other Useful
Functions

Function Description

seq(from , to, by) generate a sequence
indices <- seq(1,10,2)
#indices is c(1, 3, 5, 7, 9)

rep(x, ntimes) repeat x n times
y <- rep(1:3, 2)
y is c(1, 2, 3, 1, 2, 3)

cut(x, n) divide continuous variable in factor with n levels
y <- cut(x, 5)

Sorting
 To sort a dataframe in R, use the order() function. By

default, sorting is ASCENDING. Prepend the sorting
variable by a minus sign to indicate DESCENDING
order. Here are some examples.

 # sorting examples using the mtcars dataset
data(mtcars)
sort by mpg
newdata = mtcars[order(mtcars$mpg),]
sort by mpg and cyl
newdata <- mtcars[order(mtcars$mpg, mtcars$cyl),]
#sort by mpg (ascending) and cyl (descending)
newdata <- mtcars[order(mtcars$mpg, -mtcars$cyl),]

Merging
To merge two dataframes (datasets) horizontally,

use the merge function. In most cases, you join
two dataframes by one or more common key
variables (i.e., an inner join).

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country
total <-
merge(dataframeA,dataframeB,by=c("ID","Count
ry"))

Merging
ADDING ROWS
To join two dataframes (datasets) vertically, use the

rbind function. The two dataframes must have the
same variables, but they do not have to be in the
same order.

total <- rbind(dataframeA, dataframeB)

If dataframeA has variables that dataframeB does not, then
either:

Delete the extra variables in dataframeA or
Create the additional variables in dataframeB and

set them to NA (missing)
before joining them with rbind.

http://www.statmethods.net/input/missingdata.html

Aggregating
 It is relatively easy to collapse data in R

using one or more BY variables and a
defined function.

 # aggregate dataframe mtcars by cyl and vs,
returning means
for numeric variables
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl),
 FUN=mean, na.rm=TRUE)
print(aggdata)

 OR use apply

Aggregating
 When using the aggregate()

function, the by variables must be in
a list (even if there is only one). The
function can be built-in or user
provided.

 See also:
 summarize() in the Hmisc package
 summaryBy() in the doBy package

http://cran.r-project.org/web/packages/Hmisc/index.html
http://cran.r-project.org/web/packages/doBy/index.html

Data Type Conversion
 Type conversions in R work as you

would expect. For example, adding a
character string to a numeric vector
converts all the elements in the vector
to character.

 Use is.foo to test for data type foo.
Returns TRUE or FALSE
Use as.foo to explicitly convert it.

 is.numeric(), is.character(), is.vector(),
is.matrix(), is.data.frame()
as.numeric(), as.character(),
as.vector(), as.matrix(), as.data.frame)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

