
Lecture 3-5: Data
Input(Data analysis
using R)

Outline
 Data Types
 Importing Data
 Keyboard Input
 Database Input
 Exporting Data
 Viewing Data
 Variable Labels
 Value Labels
 Missing Data
 Date Values

Data Types
R has a wide variety of data types

including scalars, vectors (numerical,
character, logical), matrices, dataframes,
and lists.

Vectors
a <- c(1,2,5.3,6,-2,4) # numeric vector
b <- c("one","two","three") # character

vector
c <-

c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)
#logical vector
Refer to elements of a vector using

subscripts.
a[c(2,4)] # 2nd and 4th elements of vector

Matrices
All columns in a matrix must have the same mode(numeric, character, etc.)

and the same length.
The general format is
mymatrix <- matrix(vector, nrow=r, ncol=c,

byrow=FALSE,dimnames=list(char_vector_rownames,
char_vector_colnames))

byrow=TRUE indicates that the matrix should be filled by rows.
byrow=FALSE indicates that the matrix should be filled by columns (the
default). dimnames provides optional labels for the columns and rows.

Matrices
generates 5 x 4 numeric matrix

y<-matrix(1:20, nrow=5,ncol=4)
another example

cells <- c(1,26,24,68)
rnames <- c("R1", "R2")
cnames <- c("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames, cnames))

#Identify rows, columns or elements using subscripts.
x[,4] # 4th column of matrix

x[3,] # 3rd row of matrix
x[2:4,1:3] # rows 2,3,4 of columns 1,2,3

Arrays
Arrays are similar to matrices but can have

more than two dimensions. See
help(array) for details.

Data frames
A data frame is more general than a matrix, in that different columns

can have different modes (numeric, character, factor, etc.).
d <- c(1,2,3,4)
e <- c("red", "white", "red", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(d,e,f)
names(mydata) <- c("ID","Color","Passed") #variable names

Data frames
There are a variety of ways to identify the elements of a

dataframe .

myframe[3:5] # columns 3,4,5 of dataframe
myframe[c("ID","Age")] # columns ID and Age from

dataframe

myframe$X1 # variable x1 in the dataframe

Lists
An ordered collection of objects (components). A list allows you

to gather a variety of (possibly unrelated) objects under one
name.

example of a list with 4 components -
a string, a numeric vector, a matrix, and a scaler
w <- list(name="Fred", mynumbers=a, mymatrix=y, age=5.3)

example of a list containing two lists
v <- c(list1,list2)

Lists
Identify elements of a list using the [[]]

convention.
mylist[[2]] # 2nd component of the list

Factors
Tell R that a variable is nominal by making it a factor. The factor stores the nominal

values as a vector of integers in the range [1... k] (where k is the number of
unique values in the nominal variable), and an internal vector of character strings
(the original values) mapped to these integers.

variable gender with 20 "male" entries and
30 "female" entries

gender <- c(rep("male",20), rep("female", 30))
gender <- factor(gender)

stores gender as 20 1s and 30 2s and associates
1=female, 2=male internally (alphabetically)
R now treats gender as a nominal variable

summary(gender)

Useful Functions
length(object) # number of elements or components
str(object) # structure of an object
class(object) # class or type of an object
names(object) # names
c(object,object,...) # combine objects into a vector
cbind(object, object, ...) # combine objects as columns

rbind(object, object, ...) # combine objects as rows
ls() # list current objects
rm(object) # delete an object
newobject <- edit(object) # edit copy and save a
newobject
fix(object) # edit in place

Importing Data
Importing data into R is fairly simple.
For Stata and Systat, use the foreign package.
 For SPSS and SAS I would recommend the Hmisc

package for ease and functionality.
See the Quick-R section on packages, for information

on obtaining and installing the these packages.
Example of importing data are provided below.

http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html
http://www.statmethods.net/interface/packages.html

From A Comma
Delimited Text File

first row contains variable names, comma is
separator

assign the variable id to row names
note the / instead of \ on mswindows systems

mydata <- read.table("c:/mydata.csv",
header=TRUE, sep=",", row.names="id")

From Excel
The best way to read an Excel file is to export it to a comma

delimited file and import it using the method above.
 On windows systems you can use the RODBC package to access

Excel files. The first row should contain variable/column names.
first row contains variable names
we will read in workSheet mysheet

library(RODBC)
channel <- odbcConnectExcel("c:/myexel.xls")
mydata <- sqlFetch(channel, "mysheet")
odbcClose(channel)

From SAS
 # save SAS dataset in trasport format

libname out xport 'c:/mydata.xpt';
data out.mydata;
set sasuser.mydata;
run;

 library(foreign)
 #bsl=read.xport(“mydata.xpt")

Keyboard Input
Usually you will obtain a dataframe by importing it from

SAS, SPSS, Excel, Stata, a database, or an ASCII file.
To create it interactively, you can do something like the
following.

create a dataframe from scratch
age <- c(25, 30, 56)
gender <- c("male", "female", "male")
weight <- c(160, 110, 220)
mydata <- data.frame(age,gender,weight)

http://www.statmethods.net/input/importingdata.html

Keyboard Input
You can also use R's built in spreadsheet to enter the data

interactively, as in the following example.
enter data using editor

mydata <- data.frame(age=numeric(0), gender=character(0),
weight=numeric(0))
mydata <- edit(mydata)
note that without the assignment in the line above,
the edits are not saved!

Exporting Data
There are numerous methods for exporting R

objects into other formats . For SPSS, SAS
and Stata. you will need to load the foreign
packages. For Excel, you will need the
xlsReadWrite package.

http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/xlsReadWrite/index.html

Exporting Data
To A Tab Delimited Text File
write.table(mydata, "c:/mydata.txt", sep="\t")
To an Excel Spreadsheet
library(xlsReadWrite)

write.xls(mydata, "c:/mydata.xls")
To SAS
library(foreign)

write.foreign(mydata, "c:/mydata.txt", "c:/mydata.sas",
 package="SAS")

Viewing Data
There are a number of functions for listing the contents of an object or

dataset.
list objects in the working environment

ls()

list the variables in mydata
names(mydata)

list the structure of mydata
str(mydata)

list levels of factor v1 in mydata
levels(mydata$v1)

dimensions of an object
dim(object)

Viewing Data
There are a number of functions for listing the contents of an

object or dataset.
class of an object (numeric, matrix, dataframe, etc)

class(object)
print mydata

mydata
print first 10 rows of mydata

head(mydata, n=10)
print last 5 rows of mydata

tail(mydata, n=5)

Variable Labels
R's ability to handle variable labels is somewhat

unsatisfying.
If you use the Hmisc package, you can take

advantage of some labeling features.
library(Hmisc)

label(mydata$myvar) <- "Variable label for
variable myvar"
describe(mydata)

http://cran.r-project.org/web/packages/Hmisc/index.html

Variable Labels
Unfortunately the label is only in effect for functions

provided by the Hmisc package, such as
describe(). Your other option is to use the
variable label as the variable name and then refer
to the variable by position index.

names(mydata)[3] <- "This is the label for variable
3"
mydata[3] # list the variable

Value Labels
To understand value labels in R, you need to understand the data structure factor.
You can use the factor function to create your own value lables.
variable v1 is coded 1, 2 or 3
we want to attach value labels 1=red, 2=blue,3=green

mydata$v1 <- factor(mydata$v1,
levels = c(1,2,3),
labels = c("red", "blue", "green"))

variable y is coded 1, 3 or 5
we want to attach value labels 1=Low, 3=Medium, 5=High

http://www.statmethods.net/input/datatypes.html

Value Labels
mydata$v1 <- ordered(mydata$y,

levels = c(1,3, 5),
labels = c("Low", "Medium", "High"))

Use the factor() function for nominal data and the
ordered() function for ordinal data. R statistical and
graphic functions will then treat the data appropriately.

Note: factor and ordered are used the same way, with the
same arguments. The former creates factors and the
later creates ordered factors.

Missing Data
In R, missing values are represented by the symbol NA (not

available) . Impossible values (e.g., dividing by zero) are
represented by the symbol NaN (not a number). Unlike SAS,
R uses the same symbol for character and numeric data.

Testing for Missing Values
is.na(x) # returns TRUE of x is missing
y <- c(1,2,3,NA)
is.na(y) # returns a vector (F F F T)

Missing Data
Recoding Values to Missing
recode 99 to missing for variable v1
select rows where v1 is 99 and recode column v1
mydata[mydata$v1==99,"v1"] <- NA
Excluding Missing Values from Analyses
Arithmetic functions on missing values yield missing values.
x <- c(1,2,NA,3)
mean(x) # returns NA
mean(x, na.rm=TRUE) # returns 2

Missing Data
The function complete.cases() returns a logical

vector indicating which cases are complete.
list rows of data that have missing values

mydata[!complete.cases(mydata),]
The function na.omit() returns the object with listwise

deletion of missing values.
create new dataset without missing data

newdata <- na.omit(mydata)

Missing Data
Advanced Handling of Missing Data
Most modeling functions in R offer options for

dealing with missing values. You can go beyond
pairwise of listwise deletion of missing values
through methods such as multiple imputation.
Good implementations that can be accessed
through R include Amelia II, Mice, and mitools.

http://gking.harvard.edu/amelia/
http://web.inter.nl.net/users/S.van.Buuren/mi/hmtl/mice.htm
http://cran.us.r-project.org/web/packages/mitools/index.html

Date Values
Dates are represented as the number of days since

1970-01-01, with negative values for earlier dates.
use as.Date() to convert strings to dates
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

number of days between 6/22/07 and 2/13/04
days <- mydates[1] - mydates[2]

Sys.Date() returns today's date.
Date() returns the current date and time.

Date Values
The following symbols can be used with

the format() function to print dates.

Symbol Meaning Example

%d day as a number (0-31) 01-31

%a
%A

abbreviated weekday
unabbreviated weekday

Mon
Monday

%m month (00-12) 00-12

%b
%B

abbreviated month
unabbreviated month

Jan
January

%y
%Y

2-digit year
4-digit year

07
2007

Date Values
print today's date
today <- Sys.Date()
format(today, format="%B %d %Y")

"June 20 2007"

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

