
Lecture 2: R
Basics(Data analysis
using R)

Outline
 Why R, and R Paradigm
 References, Tutorials and links
 R Overview
 R Interface
 R Workspace
 Help
 R Packages
 Input/Output
 Reusing Results

Why R?
It's free!
It runs on a variety of platforms including

Windows, Unix and MacOS.
It provides an unparalleled platform for

programming new statistical methods in
an easy and straightforward manner.

It contains advanced statistical routines
not yet available in other packages.

It has state-of-the-art graphics capabilities.

R has a Steep
Learning Curve
(steeper for those that knew

SAS or other software before)
First, while there are many introductory

tutorials (covering data types, basic
commands, the interface), none alone are
comprehensive. In part, this is because
much of the advanced functionality of R
comes from hundreds of user contributed
packages. Hunting for what you want can be
time consuming, and it can be hard to get a
clear overview of what procedures are
available.

R has a Learning Curve
(steeper for those that knew SAS or other software

before)
The second reason is more transient. As users of

statistical packages, we tend to run one controlled
procedure for each type of analysis. Think of PROC GLM
in SAS. We can carefully set up the run with all the
parameters and options that we need. When we run the
procedure, the resulting output may be a hundred pages
long. We then sift through this output pulling out what
we need and discarding the rest.

R paradigm is
different

Rather than setting up a complete analysis
at once, the process is highly interactive.
You run a command (say fit a model),
take the results and process it through
another command (say a set of
diagnostic plots), take those results and
process it through another command
(say cross-validation), etc. The cycle may
include transforming the data, and
looping back through the whole process
again. You stop when you feel that you
have fully analyzed the data.

How to download?
 Google it using R or CRAN
(Comprehensive R Archive Network)
 http://www.r-project.org

Tutorials
Each of the following tutorials are in PDF format.
 P. Kuhnert & B. Venables,

An Introduction to R: Software for Statistical Modeling &
 Computing

 J.H. Maindonald, Using R for Data Analysis and Graphics
 B. Muenchen, R for SAS and SPSS Users
 W.J. Owen, The R Guide
 D. Rossiter,

Introduction to the R Project for Statistical Computing f
or Use at the ITC

 W.N. Venebles & D. M. Smith, An Introduction to R

http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip
http://cran.r-project.org/doc/contrib/usingR.pdf
http://rforsasandspssusers.googlepages.com/RforSASSPSSusers.pdf
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

Web links
 Paul Geissler's excellent R tutorial
 Dave Robert's Excellent Labs on Ecological Analysis
 Excellent Tutorials by David Rossitier
 Excellent tutorial an nearly every aspect of R (c/o Rob Kabacoff) MOST

of these notes follow this web page format
 Introduction to R by Vincent Zoonekynd
 R Cookbook
 Data Manipulation Reference

http://casoilresource.lawr.ucdavis.edu/drupal/node/www.fort.usgs.gov/BRDScience/LearnR.htm
http://ecology.msu.montana.edu/labdsv/R/labs/
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R
http://www.statmethods.net/index.html
http://zoonek2.free.fr/UNIX/48_R/all.html
http://zoonek2.free.fr/UNIX/48_R/all.html
http://www.r-cookbook.com/node/40
http://wiki.r-project.org/rwiki/doku.php?id=guides:overview-data-manip

Web links
 R time series tutorial
 R Concepts and Data Types presentation by Deepayan Sarkar
 Interpreting Output From lm()
 The R Wiki
 An Introduction to R
 Import / Export Manual
 R Reference Cards

http://casoilresource.lawr.ucdavis.edu/drupal/node/100
http://www.stat.wisc.edu/~deepayan/SIBS2005/slides/language-overview-4.pdf
http://www.rni.helsinki.fi/~pek/s-tools/lm-more.r
http://wiki.r-project.org/rwiki/doku.php
http://wiki.r-project.org/rwiki/doku.php
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Web links
 KickStart
 Hints on plotting data in R
 Regression and ANOVA
 Appendices to Fox Book on Regression
 JGR a Java-based GUI for R [Mac|Windows|Linux]
 A Handbook of Statistical Analyses Using R(Brian S. Everitt and Torsten Hothorn)

http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.lsa.umich.edu/~faraway/book/
http://cran.r-project.org/doc/contrib/Fox-Companion/
http://stats.math.uni-augsburg.de/JGR/
http://cran.r-project.org/src/contrib/Descriptions/HSAUR.html
http://cran.r-project.org/src/contrib/Descriptions/HSAUR.html

R Overview
R is a comprehensive statistical and

graphical programming language and is a
dialect of the S language:

1988 - S2: RA Becker, JM Chambers, A Wilks
1992 - S3: JM Chambers, TJ Hastie
1998 - S4: JM Chambers

R: initially written by Ross Ihaka and Robert
Gentleman at Dep. of Statistics of U of
Auckland, New Zealand during 1990s.

Since 1997: international “R-core” team of
15 people with access to common CVS
archive.

R Overview
You can enter commands one at a time at

the command prompt (>) or run a set of
commands from a source file.

There is a wide variety of data types,
including vectors (numerical, character,
logical), matrices, dataframes, and lists.

To quit R, use
>q()

R Overview
Most functionality is provided through

built-in and user-created functions and
all data objects are kept in memory
during an interactive session.

Basic functions are available by default.
Other functions are contained in
packages that can be attached to a
current session as needed

R Overview
A key skill to using R effectively is learning

how to use the built-in help system.
Other sections describe the working
environment, inputting programs and
outputting results, installing new
functionality through packages and etc.

A fundamental design feature of R is that
the output from most functions can be
used as input to other functions. This is
described in reusing results.

R Interface
Start the R system, the main window

(RGui) with a sub window (R
Console) will appear

In the `Console' window the cursor is
waiting for you to type in some R
commands.

Your First R
Session

R Introduction
 Results of calculations can be stored in objects

using the assignment operators:
 An arrow (<-) formed by a smaller than character

and a hyphen without a space!
 The equal character (=).

R Introduction
 These objects can then be used in other

calculations. To print the object just enter the
name of the object. There are some
restrictions when giving an object a name:
 Object names cannot contain `strange' symbols like

!, +, -, #.
 A dot (.) and an underscore () are allowed, also a

name starting with a dot.
 Object names can contain a number but cannot

start with a number.
 R is case sensitive, X and x are two different

objects, as well as temp and temP.

An example
> # An example
> x <- c(1:10)
> x[(x>8) | (x<5)]
> # yields 1 2 3 4 9 10
> # How it works
> x <- c(1:10)
> X
>1 2 3 4 5 6 7 8 9 10
> x > 8
> F F F F F F F F T T
> x < 5
> T T T T F F F F F F
> x > 8 | x < 5
> T T T T F F F F T T
> x[c(T,T,T,T,F,F,F,F,T,T)]
> 1 2 3 4 9 10

R Introduction
 To list the objects that you have in your current R

session use the function ls or the function objects.
> ls()
[1] "x" "y"

 So to run the function ls we need to enter the name
followed by an opening (and and aclosing).
Entering only ls will just print the object, you will see
the underlying R code of the the function ls. Most
functions in R accept certain arguments. For
example, one of the arguments of the function ls is
pattern. To list all objects starting with the letter x:

> x2 = 9
> y2 = 10
> ls(pattern="x")
[1] "x" "x2"

R Introduction
 If you assign a value to an object that already

exists then the contents of the object will be
overwritten with the new value (without a
warning!). Use the function rm to remove one or
more objects from your session.

> rm(x, x2)

 Lets create two small vectors with data and a
scatterplot.

z2 <- c(1,2,3,4,5,6)
z3 <- c(6,8,3,5,7,1)
plot(z2,z3)
title("My first scatterplot")

R Warning !

R is a case sensitive language.
FOO, Foo, and foo are three different objects

R Introduction
> x = sin(9)/75
> y = log(x) + x^2
> x
[1] 0.005494913
> y
[1] -5.203902
> m <- matrix(c(1,2,4,1), ncol=2)
> m
> [,1] [,2]
[1,] 1 4
[2,] 2 1
> solve(m)
[,1] [,2]
[1,] -0.1428571 0.5714286
[2,] 0.2857143 -0.1428571

R Workspace
Objects that you create during an R

session are hold in memory, the
collection of objects that you
currently have is called the
workspace. This workspace is not
saved on disk unless you tell R to do
so. This means that your objects are
lost when you close R and not save
the objects, or worse when R or your
system crashes on you during a
session.

R Workspace
When you close the RGui or the R

console window, the system will ask
if you want to save the workspace
image. If you select to save the
workspace image then all the objects
in your current R session are saved
in a file .RData. This is a binary file
located in the working directory of R,
which is by default the installation
directory of R.

R Workspace
 During your R session you can also

explicitly save the workspace image. Go
to the `File‘ menu and then select `Save
Workspace...', or use the save.image
function.

save to the current working directory
save.image()
just checking what the current working

directory is
getwd()
save to a specific file and location
save.image("C:\\Program Files\\R\\R-2.5.0\\

bin\\.RData")

R Workspace
If you have saved a workspace image

and you start R the next time, it will
restore the workspace. So all your
previously saved objects are
available again. You can also
explicitly load a saved workspace le,
that could be the workspace image of
someone else. Go the `File' menu and
select `Load workspace...'.

R Workspace

Commands are entered interactively at
the R user prompt. Up and down
arrow keys scroll through your
command history.

You will probably want to keep different
projects in different physical
directories.

R Workspace
R gets confused if you use a path in your

code like
 c:\mydocuments\myfile.txt

This is because R sees "\" as an escape
character. Instead, use

c:\\my documents\\myfile.txt
 or

 c:/mydocuments/myfile.txt

R Workspace

getwd() # print the current working
directory

ls() # list the objects in the current
workspace

setwd(mydirectory) # change to
mydirectory

setwd("c:/docs/mydir")

R Workspace

#view and set options for the session
help(options) # learn about available options
options() # view current option settings
options(digits=3) # number of digits to print
on output

work with your previous commands
history() # display last 25 commands
history(max.show=Inf) # display all previous commands

R Workspace

save your command history
savehistory(file="myfile") # default is
".Rhistory"

recall your command history
loadhistory(file="myfile") # default is
".Rhistory“

R Help
Once R is installed, there is a

comprehensive built-in help system. At
the program's command prompt you can
use any of the following:

help.start() # general help
help(foo) # help about function foo
?foo # same thing
apropos("foo") # list all function containing string foo

example(foo) # show an example of function foo

R Help
search for foo in help manuals and archived mailing

lists

RSiteSearch("foo")
get vignettes on using installed

packages
vignette() # show available
vingettes
vignette("foo") # show specific
vignette

R Datasets
R comes with a number of sample datasets

that you can experiment with. Type
> data()
 to see the available datasets. The results

will depend on which packages you have
loaded. Type

help(datasetname)
for details on a sample dataset.

http://www.statmethods.net/interface/packages.html

R Packages
 One of the strengths of R is that the system

can easily be extended. The system allows you
to write new functions and package those
functions in a so called `R package' (or `R
library'). The R package may also contain other
R objects, for example data sets or
documentation. There is a lively R user
community and many R packages have been
written and made available on CRAN for other
users. Just a few examples, there are packages
for portfolio optimization, drawing maps,
exporting objects to html, time series analysis,
spatial statistics and the list goes on and on.

R Packages
 When you download R, already a number

(around 30) of packages are downloaded as well.
To use a function in an R package, that package
has to be attached to the system. When you
start R not all of the downloaded packages are
attached, only seven packages are attached to
the system by default. You can use the function
search to see a list of packages that are
currently attached to the system, this list is also
called the search path.

> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:datasets" "package:utils"
[7] "package:methods" "Autoloads" "package:base"

R Packages
To attach another package to the system you can use

the menu or the library function. Via the menu:

Select the `Packages' menu and select `Load package...',
a list of available packages on your system will be
displayed. Select one and click `OK', the package is
now attached to your current R session. Via the library
function:

> library(MASS)
> shoes
$A
[1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
$B
[1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

R Packages
 The function library can also be used to list all the

available libraries on your system with a short
description. Run the function without any arguments

> library()
Packages in library 'C:/PROGRA~1/R/R-25~1.0/library':
base The R Base Package
Boot Bootstrap R (S-Plus) Functions (Canty)
class Functions for Classification
cluster Cluster Analysis Extended Rousseeuw et al.
codetools Code Analysis Tools for R
datasets The R Datasets Package
DBI R Database Interface
foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat,

dBase, ...
graphics The R Graphics Package

R Packages
install = function() {
install.packages(c("moments","graphics","Rcmdr","hexb
in"),
repos="http://lib.stat.cmu.edu/R/CRAN")
}
install()

R Conflicting
objects

 It is not recommended to do, but R allows the user to give an
object a name that already exists. If you are not sure if a
name already exists, just enter the name in the R console
and see if R can find it. R will look for the object in all the
libraries (packages) that are currently attached to the R
system. R will not warn you when you use an existing name.

> mean = 10
> mean
[1] 10

 The object mean already exists in the base package, but is
now masked by your object mean. To get a list of all masked
objects use the function conflicts.

>
[1] "body<-" "mean"

R Conflicting
objects

The object mean already exists in the base package, but
is now masked by your object mean. To get a list of all
masked objects use the function conflicts.

> conflicts()
[1] "body<-" "mean“

You can safely remove the object mean with the function
rm() without risking deletion of the mean function.

Calling rm() removes only objects in your working
environment by default.

Source Codes
you can have input come from a script file (a file

containing R commands) and direct output to a
variety of destinations.

Input
The source() function runs a script in the current

session. If the filename does not include a path,
the file is taken from the current working directory.

input a script
source("myfile")

Output
Output
The sink() function defines the direction of

the output.
direct output to a file

sink("myfile", append=FALSE, split=FALSE)

return output to the terminal
sink()

Output
The append option controls whether output

overwrites or adds to a file.
The split option determines if output is also

sent to the screen as well as the output file.
Here are some examples of the sink()

function.
output directed to output.txt in c:\projects directory.
output overwrites existing file. no output to

terminal.
sink("myfile.txt", append=TRUE, split=TRUE)

Graphs
To redirect graphic output use one of the

following functions. Use dev.off() to return
output to the terminal.

Function Output to

pdf("mygraph.pdf") pdf file

win.metafile("mygraph.wmf") windows metafile

png("mygraph.png") png file

jpeg("mygraph.jpg") jpeg file

bmp("mygraph.bmp") bmp file

postscript("mygraph.ps") postscript file

Redirecting Graphs
example - output graph to jpeg file

jpeg("c:/mygraphs/myplot.jpg")
plot(x)
dev.off()

Reusing Results
One of the most useful design features of R is that

the output of analyses can easily be saved and
used as input to additional analyses.

Example 1
lm(mpg~wt, data=mtcars)

This will run a simple linear regression of miles per
gallon on car weight using the dataframe mtcars.
Results are sent to the screen. Nothing is saved.

Reusing Results
Example 2

fit <- lm(mpg~wt, data=mtcars)
This time, the same regression is performed

but the results are saved under the name fit.
No output is sent to the screen. However,
you now can manipulate the results.

str(fit) # view the contents/structure of "fit“
The assignment has actually created a list

called "fit" that contains a wide range of
information (including the predicted values,
residuals, coefficients, and more.

http://www.statmethods.net/input/datatypes.html

Reusing Results
plot residuals by fitted values

plot(fit$residuals, fit$fitted.values)
To see what a function returns, look at the value section

of the online help for that function. Here we would look
at help(lm).

The results can also be used by a wide range of other
functions.

produce diagnostic plots
plot(fit)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

