Data analysis using R

-Amresh K. Singh,
Dept of Computer Sc.
MGSU Bikaner
Paper Code:MCS-305(a)

Main topics to be covered

- What is R
- How to obtain and install R
- How to read and export data
- How to do basic statistical analyses
- Econometric packages in R

What is R

- Software for Statistical Data Analysis
- Based on S
- Programming Environment
- Interpreted Language
- Data Storage, Analysis, Graphing
- Free and Open Source Software

Obtaining R

- Current Version: R-2.0.0
- Comprehensive R Archive Network:

http://cran.r-project.org

- Binary source codes
- Windows executables
- Compiled RPMs for Linux
- Can be obtained on a CD

Installing R

- Binary (Windows/Linux): One step process
- exe, rpm (Red Hat/Mandrake), apt-get (Debian)
- Linux, from sources:
\$ tar -zxvf "filename.tar.gz"
\$ cd filename
\$./configure
\$ make
\$ make check
\$ make install

Starting R

\longleftarrow Windows, Double-click on Desktop Icon
\$ Linux, type R at command prompt

Strengths and Weaknesses

- Strengths
- Free and Open Source
- Strong User Community
- Highly extensible, flexible
- Implementation of high end statistical methods
- Flexible graphics and intelligent defaults
- Weakness
- Steep learning curve
- Slow for large datasets

Basics

- Highly Functional
- Everything done through functions
- Strict named arguments
- Abbreviations in arguments OK
- Object Oriented
- Everything is an object
- "<"" is an assignment operator
- "X <- 5": X GETS the value 5

Getting Help in R

- From Documentation:
- ?WhatIWantToKnow
- help("WhatIWantToKnow")
- help.search("WhatIWantToKnow")
- help.start()
- getAnywhere("WhatIWantToKnow")
- example("WhatIWantToKnow")
- Documents: "Introduction to R"
- Active Mailing List
- Archives
- Directly Asking Questions on the List

Data Structures

- Supports virtually any type of data
- Numbers, characters, logicals (TRUE/ FALSE)
- Arrays of virtually unlimited sizes
- Simplest: Vectors and Matrices
- Lists: Can Contain mixed type variables
- Data Frame: Rectangular Data Set

Data Structure in \mathbf{R}

	Linear	Rectangular
All Same Type	VECTORS	MATRIX*
Mixed	LIST	DATA FRAME

Running R

- Directly in the Windowing System (Console)
- Using Editors
- Notepad, WinEdt, Tinn-R: Windows
- Xemacs, ESS (Emacs speaks Statistics)
- On the Editor:
- source("filename.R")
- Outputs can be diverted by using
-sink("filename.Rout")

R Working Area

R 2．0．0－A Language and Environment
Hy start 图 Microsoft PowerPoin
园 Microsoft PowerPoint．
［区 Adobe Reader－［R．pdf］someanal．R－Notepad
焉 An Introduction to R．．． \mathbb{R} RGui
（大）11：08 PM

In an R Session...

- First, read data from other sources
- Use packages, libraries, and functions
- Write functions wherever necessary
- Conduct Statistical Data Analysis
- Save outputs to files, write tables
- Save R workspace if necessary (exit prompt)

Specific Tasks

- To see which directories and data are loaded, type: search()
- To see which objects are stored, type: Is()
- To include a dataset in the searchpath for analysis, type: attach(NameOfTheDataset, expression)
- To detach a dataset from the searchpath after analysis, type: detach(NameOfTheDataset)

Reading data into R

- R not well suited for data preprocessing
- Preprocess data elsewhere (SPSS, etc...)
- Easiest form of data to input: text file
- Spreadsheet like data:
- Small/medium size: use read.table()
- Large data: use scan()
- Read from other systems:
- Use the library "foreign": Iibrary(foreign)
- Can import from SAS, SPSS, Epi Info
- Can export to STATA

Reading Data: summary

- Directly using a vector e.g.: $x<-c(1,2,3 . .$.
- Using scan and read.table function
- Using matrix function to read data matrices
- Using data.frame to read mixed data
- library(foreign) for data from other programs

Accessing Variables

- edit(<mydataobject>)
- Subscripts essential tools
$-x[1]$ identifies first element in vector x
$-\mathrm{y}[1$,$] identifies first row in matrix \mathrm{y}$
$-y[1]$ identifies first column in matrix y
- $\$$ sign for lists and data frames
- myframe\$age gets age variable of myframe
- attach(dataframe) -> extract by variable name

Subset Data

- Using subset function
- subset() will subset the dataframe
- Subscripting from data frames
- myframe[1] gives first column of myframe
- Specifying a vector
- myframe[1:5] gives first 5 rows of data
- Using logical expressions
- myframe[myframe[,1], < 5,] gets all rows of the first column that contain values less than 5

Graphics

- Plot an object, like: plot(num.vec)
- here plots against index numbers
- Plot sends to graphic devices
- can specify which graphic device you want
- postscript, gif, jpeg, etc...
- you can turn them on and off, like: dev.off()
- Two types of plotting
- high level: graphs drawn with one call
- Low Level: add additional information to existing graph

High Level: generated with plot()

Number of Airline Passengers over time

Low Level: Scattergram with Lowess

distance vs speed

Programming in R

- Functions \& Operators typically work on entire vectors
- Expressions surrounded by $\}$
- Codes separated by newlines, ";" not necessary
- You can write your own functions and use them

Statistical Functions in R

- Descriptive Statistics
- Statistical Modeling
- Regressions: Linear and Logistic
- Probit, Tobit Models
- Time Series
- Multivariate Functions
- Inbuilt Packages, contributed packages

Descriptive Statistics

- Has functions for all common statistics
- summary() gives lowest, mean, median, first, third quartiles, highest for numeric variables
- stem() gives stem-leaf plots
- table() gives tabulation of categorical variables

Statistical Modeling

- Over 400 functions
- Im, glm, aov, ts
- Numerous libraries \& packages
- survival, coxph, tree (recursive trees), nls, ...
- Distinction between factors and regressors
- factors: categorical, regressors: continuous
- you must specify factors unless they are obvious to \mathbf{R}
- dummy variables for factors created automatically
- Use of data.frame makes life easy

How to model

- Specify your model like this:
$-y \sim x_{i}+c_{i}$, where
$-y=$ outcome variable, $x_{i}=$ main explanatory variables, $c_{i}=$ covariates, $+=$ add terms
- Operators have special meanings
- + = add terms, : = interactions, l = nesting, so on...
- Modeling -- object oriented
- each modeling procedure produces objects
- classes and functions for each object

Synopsis of Operators

Operator	Usually means	In Formula means
+ or -	add or subtract	add or remove terms
$*$	multiplication	main effect and interactions
I	division	main effect and nesting
$:$	sequence	interaction only
\wedge	exponentiation	limiting interaction depths
$\%$ in\%	no specific	nesting only

Modeling Example: Regression

carReg <- Im(speed~dist, data=cars)
carReg $=$ becomes an object
to get summary of this regression, we type summary(carReg)
to get only coefficients, we type
coef(carReg), or carReg\$coef
don't want intercept? add 0, so
carReg <- Im(speed~0+dist, data=cars)

Multivariate Techniques

- Several Libraries available
- mva, hmisc, glm,
- MASS: discriminant analysis and multidim scaling
- Econometrics packages
- dse (multivariate time series, state-space models), ineq: for measuring inequality, poverty estimation, its: for irregular time series, sem: structural equation modeling, and so on...
[http://www.mayin.org/ajayshah/]

Summarizing...

- Effective data handling and storage
- large, coherent set of tools for data analysis
- Good graphical facilities and display
- on screen
- on paper
- well-developed, simple, effective programming

References

R home page

http://www.r-project.org

R discussion group

http://www.stat.math.ethz.ch/mailman/listinfo/r-help

Disclaimer

The content may be used by the students (only for educational purpose, not for commercial purpose.)

