Data analysis using R

-Amresh K. Singh,

Dept of Computer Sc.

MGSU Bikaner

Paper Code:MCS-305(a)

Main topics to be covered

- What is R
- How to obtain and install R
- How to read and export data
- How to do basic statistical analyses
- Econometric packages in R

What is **R**

- Software for Statistical Data Analysis
- Based on S
- Programming Environment
- Interpreted Language
- Data Storage, Analysis, Graphing
- Free and Open Source Software

Obtaining R

- Current Version: R-2.0.0
- Comprehensive R Archive Network:

http://cran.r-project.org

- Binary source codes
- Windows executables
- Compiled RPMs for Linux
- Can be obtained on a CD

Installing R

- Binary (Windows/Linux): One step process
 - exe, rpm (Red Hat/Mandrake), apt-get (Debian)
- Linux, from sources:
 - \$ tar -zxvf "filename.tar.gz"
 - \$ cd filename
 - \$./configure
 - \$ make
 - \$ make check
 - **\$ make install**

Starting R

Strengths and Weaknesses

- Strengths
 - Free and Open Source
 - Strong User Community
 - Highly extensible, flexible
 - Implementation of high end statistical methods
 - Flexible graphics and intelligent defaults
- Weakness
 - Steep learning curve
 - Slow for large datasets

Basics

- Highly Functional
 - Everything done through functions
 - Strict named arguments
 - Abbreviations in arguments OK for TRUE)
- Object Oriented
 - Everything is an object
 - "<-" is an assignment operator</p>
 - "X <- 5": X GETS the value 5</p>

(e.g. T

Getting Help in R

- From Documentation:
 - ?WhatIWantToKnow
 - help("WhatIWantToKnow")
 - help.search("WhatIWantToKnow")
 - help.start()
 - getAnywhere("WhatIWantToKnow")
 - example("WhatIWantToKnow")
- Documents: "Introduction to R"
- Active Mailing List
 - Archives
 - Directly Asking Questions on the List

Data Structures

- Supports virtually any type of data
- Numbers, characters, logicals (TRUE/ FALSE)
- Arrays of virtually unlimited sizes
- Simplest: Vectors and Matrices
- Lists: Can Contain mixed type variables
- Data Frame: Rectangular Data Set

Data Structure in R

	Linear	Rectangular
All Same Type	VECTORS	MATRIX*
Mixed	LIST	DATA FRAME

Running R

- Directly in the Windowing System (Console)
- Using Editors
 - Notepad, WinEdt, Tinn-R: Windows
 - Xemacs, ESS (Emacs speaks Statistics)
- On the Editor:
 - source("filename.R")
 - Outputs can be diverted by using
 sink("filename.Rout")

R Working Area

R 2.0.0 - A Language and Environment

In an R Session...

- First, read data from other sources
- Use packages, libraries, and functions
- Write functions wherever necessary
- Conduct Statistical Data Analysis
- Save outputs to files, write tables
- Save R workspace if necessary (exit prompt)

Specific Tasks

- To see which directories and data are loaded, type: search()
- To see which objects are stored, type: **Is()**
- To include a dataset in the searchpath for analysis, type: attach(NameOfTheDataset, expression)
- To detach a dataset from the searchpath after analysis, type: detach(NameOfTheDataset)

Reading data into R

- R not well suited for data preprocessing
- Preprocess data elsewhere (SPSS, etc...)
- Easiest form of data to input: text file
- Spreadsheet like data:
 - Small/medium size: use read.table()
 - Large data: use scan()
- Read from other systems:
 - Use the library "foreign": library(foreign)
 - Can import from SAS, SPSS, Epi Info
 - Can export to STATA

Reading Data: summary

- Directly using a vector e.g.: x <- c(1,2,3...)
- Using scan and read.table function
- Using matrix function to read data matrices
- Using data.frame to read mixed data
- library(foreign) for data from other programs

Accessing Variables

- edit(<mydataobject>)
- Subscripts essential tools
 - x[1] identifies first element in vector x
 - y[1,] identifies first row in matrix y
 - y[,1] identifies first column in matrix y
- \$ sign for lists and data frames
 - myframe\$age gets age variable of myframe
 - attach(dataframe) -> extract by variable name

Subset Data

- Using subset function
 - subset() will subset the dataframe
- Subscripting from data frames
 - myframe[,1] gives first column of myframe
- Specifying a vector
 - myframe[1:5] gives first 5 rows of data
- Using logical expressions
 - myframe[myframe[,1], < 5,] gets all rows of the first column that contain values less than 5

Graphics

- Plot an object, like: plot(num.vec)
 - here plots against index numbers
- Plot sends to graphic devices
 - can specify which graphic device you want
 - postscript, gif, jpeg, etc...
 - you can turn them on and off, like: dev.off()
- Two types of plotting
 - high level: graphs drawn with one call
 - Low Level: add additional information to existing graph

High Level: generated with plot()

Number of Airline Passengers over time

Low Level: Scattergram with Lowess

distance vs speed

Programming in R

- Functions & Operators typically work on entire vectors
- Expressions surrounded by {}
- Codes separated by newlines, ";" not necessary
- You can write your own functions and use them

Statistical Functions in R

- Descriptive Statistics
- Statistical Modeling
 - Regressions: Linear and Logistic
 - Probit, Tobit Models
 - Time Series
- Multivariate Functions
- Inbuilt Packages, contributed packages

Descriptive Statistics

- Has functions for all common statistics
- summary() gives lowest, mean, median, first, third quartiles, highest for numeric variables
- stem() gives stem-leaf plots
- table() gives tabulation of categorical variables

Statistical Modeling

- Over 400 functions
 - Im, glm, aov, ts
- Numerous libraries & packages
 - survival, coxph, tree (recursive trees), nls, ...
- Distinction between factors and regressors
 - factors: categorical, regressors: continuous
 - you must specify factors unless they are obvious to R
 - dummy variables for factors created automatically
- Use of data.frame makes life easy

How to model

- Specify your model like this:
 - $-y \sim x_i + c_i$, where
 - y = outcome variable, x_i = main explanatory variables, c_i = covariates, + = add terms
 - Operators have special meanings
 - + = add terms, : = interactions, *I* = nesting, so on...
- Modeling -- object oriented
 - each modeling procedure produces objects
 - classes and functions for each object

Synopsis of Operators

Operator	Usually means	In Formula means
+ or -	add or subtract	add or remove terms
*	multiplication	main effect and interactions
1	division	main effect and nesting
:	sequence	interaction only
٨	exponentiation	limiting interaction depths
%in%	no specific	nesting only

Modeling Example: Regression

carReg <- Im(speed~dist, data=cars) carReg = becomes an object to get summary of this regression, we type summary(carReg) to get only coefficients, we type coef(carReg), or carReg\$coef don't want intercept? add 0, so carReg <- Im(speed~0+dist, data=cars)

Multivariate Techniques

- Several Libraries available
 - mva, hmisc, glm,
 - MASS: discriminant analysis and multidim scaling
- Econometrics packages
 - dse (multivariate time series, state-space models), ineq: for measuring inequality, poverty estimation, its: for irregular time series, sem: structural equation modeling, and so on...

[http://www.mayin.org/ajayshah/]

Summarizing...

- Effective data handling and storage
- large, coherent set of tools for data analysis
- Good graphical facilities and display
 - on screen
 - on paper
- well-developed, simple, effective programming

References

R home page

http://www.r-project.org

R discussion group

http://www.stat.math.ethz.ch/mailman/listinfo/r-help

Disclaimer

The content may be used by the students (only for educational purpose, not for commercial purpose.)