Basic Probability Concepts

Additional resources for Data Analysis using R

Introduction

People use the term probability many times each day. For example, physician says that a patient has a 50-50 chance of surviving a certain operation. Another physician may say that she is 95\% certain that a patient has a particular disease

Definition

If an event can occur in \mathbf{N} mutually exclusive and equally likely ways, and if m of these possess a trait, E , the probability of the occurrence of E is read as
$P(E)=m / N$

Definition

Experiment ==> any planned process of data collection. It consists of a number of trials (replications) under the same condition.

Definition

Sample space: collection of unique, non-overlapping possible outcomes of a random circumstance.

Simple event: one outcome in the sample space; a possible outcome of a random circumstance.
Event: a collection of one or more simple events in the sample space; often written as
A, B, C, and so on

Male, Female

Definition

Complement ==> sometimes, we want to knowl the probability that an event will not happen; an event opposite to the event of interest is called a complementary event.
If A is an event, its complement is The probability of the complement is $\mathbf{A C}$ or ${ }_{\mp} \mathbf{A}$ Example: The complement of male event is the female

$$
P(A)+P(A C)=1
$$

Views of Probablive 1-Subjective:

It is an estimate that reflects a person's opinion, or best guess about whether an outcome will occur.

Important in medicine ${ }^{\mathbf{}}$ form the basis of a physician's opinion (based on information gained in the history and physical examination) about whether a patient has a specific disease. Such estimate can be changed with the results of diagnostic procedures.

2- Objective
Classical

- It is well known that the probability offilipping a fair coin and getting a "tail" is 0.50 .
- If a coin is flipped 10 times, is there a guarantee, that exactly 5 tails will be observed
- If the coin is flipped 100 times? With 1000 flips?
- As the number of flips becomes larger, the proportion of coin flips that result in tails approaches 0.50

Example: Probability of Male versus Female Births

Long-run relative frequency of males born in KSA is about 0.512 ($\mathbf{5 1 2}$ boys born per 1000 births)

Table provides results of simulation: the proportion is far from . 512 over the first few weeks but in the long run settles down around . 512 .

Relative Frequency of Male Births over Time

Weeks of Watching

Total Births

30

116
317
623
919
1237

Total Boys
19
68
172
383
483
639

Proportion of Boys
.633
. 586
.543
.615
.526
.517

2- Objective

 Relative frequency

Assuming that an experiment can be repeâted many times and assuming that there are one or more outcomes that can result from each repetition. Then, the probability of a given outcome is the number of times that outcome occurs divided by the total number of repetitions.

Problem 1.

Blood Group	Males	Females	Totai	
O	20	20	40	
A	17	18	35	
B	8	7	15	
AB	5	5	10	
Total	50	50	100	

Problem 2.

An outbreak of food poisoning occurs in a group of students who attended a party

	III	Not III	Total
Ate Barbecue	90	30	120
Did Not Eat Barbecue	20	60	80
Total	110	90	200

Marginal probabilities

Named so because they appear on the "margins" of a probability table. It is probability of single outcome

Example: In problem 1, P(Male), P(Bloôd group A)
P(Male) = number of males/total number of subjects
$=50 / 100$
$=0.5$

Conditional probabilities

 It is the probability of an event on condition that certain criteria is satisfiedExample: If a subject was selected randomly and found to be female what is the probability that she has a blood group O Here the total possible outcomes constitute a subset (females) of the total number of subjects.
This probability is termed probability of O given F

$$
\begin{aligned}
\mathrm{P}(\mathrm{O} \backslash F) & =20 / 50 \\
& =0.40
\end{aligned}
$$

Joint probability

It is the probability of occurrence of two pr more events together

Example: Probability of being male \& belong to blood group $A B$
$P(M$ and $A B)=P(M \cap A B)$
$=5 / 100$
$=0.05$
n $=$ intersection

Properties

되 The probability ranges between 0 and 1 I. If an outcome cannot occur, its probability is 0
N If an outcome is sure, it has a probability of 1
『The sum of probabilities of mutually exclusive outcomes is equal to 1 $P(M)+P(F)=1$

Rules of probability

1- Multiplication rule

Independence and multiplication rule

$$
P(A \text { and } B)=P(A) P(B)
$$

P(A)

$\mathrm{P}(\mathrm{B} \backslash \mathrm{A})$

P(B)

A and B are independent

$$
P(B \backslash A)=P(B)
$$

Example:

The joint probability of being mate ar at having blood type O To know that two events are independent compute the marginal and conditional probabilities of one of them if they are equal the two events are independent. If not equal the two events are dependent $\mathrm{P}(\mathrm{O})=40 / 100=0.40$
$\mathrm{P}(\mathrm{O} \backslash \mathrm{M})=20 / 50=0.40$
Then the two events are independent $\mathrm{P}(\mathrm{O} \cap \mathrm{M})=\mathrm{P}(0) \overline{\mathrm{E}} \mathrm{P}(\mathrm{M})=(40 / 100)=(50 / 100)$
$=0.20$

Rules of probability

1- Multiplication rule

Dependence and the modified multiplication rule

$$
P(A \text { and } B)=P(A) P(B \backslash A)
$$

A and B are not independent $P(B \backslash A) \neq P(B)$

Example:

The joint probability of beingival eat barbecue

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{III}) & =110 / 200=0.55 \\
\mathrm{P}(\mathrm{II} \backslash \text { Eat } B)=90 / 120=0.75
\end{array}
$$

Then the two events are dependent

$$
=(120 / 200) \equiv(90 / 120)
$$

$$
=0.45
$$

Rules of probability

2- Addition rule

A and B are mutually exclusive
The occurrence of one event precludes the occurrence of the other

$P(A O R B)=P(A \cup B)=P(A)+P(B)$

Example:

The probability of being either blood type O or blood type A
$\mathrm{P}(\mathrm{OUA})=\mathrm{P}(\mathrm{O})+\mathrm{P}(\mathrm{A})$

$$
\begin{aligned}
& =(40 / 100)+(35 / 100) \\
& =0.75
\end{aligned}
$$

A and B are non mutually exclusive (Can occur together)
Example: Male and smoker

$P(A O R B)=P(A \cup B)=P(A)+P(B)-P(A \cap$ B)

Example:

Two events are not mutually exclusive (mâle gender and blood type O).
$P(M$ OR $O)=P(M)+P(O)-P(M \cap O)$
$=0.50+0.40-0.20$
$=0.70$

Excercises

1. If tuberculous meningitis had a case fatality $01 / 20010$
(a) Find the probability that this disease would be fatal in two randomly selected patients (the two events are independent)
(b) If two patients are selected randomly what is the probability that at least one of them will die?
(a) $P($ first die and second die) $=20 \%=20 \%=0.04$
(b) P(first die or second die)
= P(first die) + P(second die) - P(both
die)

$$
\begin{aligned}
& =20 \%+20 \%-4 \% \\
& =36 \%
\end{aligned}
$$

2. In a normally distributed population, the probanility that a subject's blood cholesterol level chit wer than 1 SD below the mean is 16% and the probability of being blood cholesterol level higher than 2 SD above the mean is 2.5%. What is the probability that a randomly selected subject will have a blood cholesterol level lower than 1 SD below the mean or higher than 2 SD above the mean.

P(blood cholesterol level < 1 SD below the mean or 2
SD above the mean) $=16 \%+2.5 \%$
= 18.5\%
3. In a study of the optimum dose of lignocainerequr ed to reduce pain on injection of an intravenous-agent used for induction of anesthesia, four dosing evighimere considered (group A received no lignocaine, While groups B, C, and D received 0.1, 0.2, and $0.4 \mathrm{mg} / \mathrm{kg}$, respectively). The following table shows the patients cross-classified by dose and pain score:

Compute the following probabilities for a
randomly selected patient:

Pain score	Group				Total
	A	B	C	D	
0	49	73	58	62	242
1	16	7	7	8	38
2	8	5	6	6	25
3	4	1	0	0	5
Total	77	86	71	76	310

2.belonging to group B or having a

Nightlights and Myopia

Assuming these data are representative of a larger population, what is the approximate probability that someone from that population who sleeps with a nightlight in early childhood will develop some degree of myopia?

Slept with:
Darkness
Nightlight
Full Light
Total

No Myopia
Муоріа
High Myopia
Total

$155(90 \%)$	$15(9 \%)$	$2(1 \%)$	172
$153(66 \%)$	$72(31 \%)$	$7(3 \%)$	232
$34(45 \%)$	$36(48 \%)$	$5(7 \%)$	75
$342(71 \%)$	$123(26 \%)$	$14(3 \%)$	479

Note: $72+7=79$ of the 232 nightlight users developed some degree of myopia. So the probability to be 79/232 $=0.34$.

Disclaimer:

The content may be used by the students (only for educational purpose, not for commercial purpose.)

