Python Loops

Python Program to Display the multiplication Table

- Source Code
- \# Multiplication table (from 1 to 10) in Python
- num = int(input("Display multiplication table of? "))
- \# Iterate 10 times from i= 1 to 10
- for i in range(1,11):
- print(num, 'x', i, '=', num*i)
- Output:
- Display multiplication table of? 12
- $12 \times 1=12$
- $12 \times 2=24$
- $12 \times 3=36$
- $12 \times 4=48$
- $12 \times 5=60$
- $12 \times 6=72$
- $12 \times 7=84$
- $12 \times 8=96$
- $12 \times 9=108$
- $12 \times 10=120$

Python Program to Find the Factorial of a Number

- Source Code
- \# Python program to find the factorial of a number provided by the user.
- \#num = int(input("Enter a number: "))
- factorial = 1
- \# check if the number is negative, positive or zero
- if num < 0:
- print("Sorry, factorial does not exist for negative numbers")
- elif num ==0:
- print("The factorial of 0 is 1 ")
- else:
- for i in range(1,num +1):
- factorial = factorial*i
- print("The factorial of",num,"is",factorial)
- Output
- The factorial of 7 is 5040

Python Program to Print the Fibonacci sequence

- Source Code:

\# Program to display the Fibonacci sequence up to n-th term

- nterms = int(input("How many terms? "))
- \# first two terms
- $\mathrm{n} 1, \mathrm{n} 2=0,1$
- count $=0$
- \# check if the number of terms is valid
- if nterms <=0:
- print("Please enter a positive integer")
- elif nterms == 1 :
- print("Fibonacci sequence upto",nterms,":")
- $\operatorname{print}(\mathrm{n} 1)$
- else:
- print("Fibonacci sequence:")
- while count < nterms:
- $\quad \operatorname{print}(\mathrm{n} 1)$
- $n t h=n 1+n 2$
- \# update values
- $\mathrm{n} 1=\mathrm{n} 2$
- $\mathrm{n} 2=\mathrm{nth}$
count += 1
- Output:
- How many terms? 7
- Fibonacci sequence:
- 0
- 1
- 1
- 2
- 3
- 5
- 8

Python Program to Check Prime Number

- Source Code
- \# Program to check if a number is prime or not
- num = int(input("Enter a number: "))
- \# prime numbers are greater than 1
- if num >1 :
- \# check for factors
- for i in range(2,num):
- if (num \% i) == 0 :
- print(num,"is not a prime number")
- break
- else:
- print(num,"is a prime number")
- \# if input number is less than
- \# or equal to 1 , it is not prime
- else:
- print(num,"is not a prime number")
- Output
- Enter a number:407
- 407 is not a prime number

Python Program to Add two Matrices

- \# This program is to add two given matrices. We are using the concept of nested lists to represent matrix
- $\mathrm{M} 1=[[1,1,1]$,
- $[1,1,1]$,
- $[1,1,1]]$
- $\mathrm{M} 2=[[1,2,3]$,
- $[4,5,6]$,
- $[7,8,9]]$
- \# In this matrix we will store the sum of above matrices. We have initialized all the elements of this matrix as zero
- sum $=[[0,0,0]$,
- $\quad[0,0,0]$,
- $[0,0,0]]$
- \#iterating the matrix rows: number of nested lists in the main list columns: number of elements in the nested lists
- for i in range(len(M1)):
- for j in range(len(M1[0])):
- \quad sum $[i][j]=$ M1 $[i][j]+M 2[i][j]$
- \# displaying the output matrix
- for num in sum:
- print(num)
- Output:
- $[2,3,4]$
- $[5,6,7]$
- $[8,9,10]$

Python continue statement

- Example: Python continue
- \# Program to show the use of continue statement inside loops
- for val in "string":
- if val == "i":
- continue
- print(val)
- print("The end")
- Output
-s
- t
- r
- ${ }^{\text {n }}$
- g
- The end

Thank You

